

Red de lagos

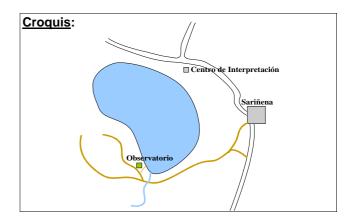
PUNTO DE MUESTREO

Código masa:	L0968	Código mues	streo: SARI-1	Fecha act	ualización de la ficha:	26/07/2011
Tipología:	Interior en cuenca	a de sedimen	tación, mineralización a	ılta-muy alta	, temporal	
Red a la que p	ertenece:		Parámetros biológicos	analizados:		
Operativa	x Referencia	a 🔲	Fitoplancton	x	Fauna bentónica inverte	ebrada 🗶
Vigilancia	Investigac	ión 🗍	Otra flora acuática	x	Peces	

LOCALIZACIÓN

Localidad: Sariñena Coordenadas:

Municipio: Sariñena **X(m)**: 734660 **Y(m)**: 4630545

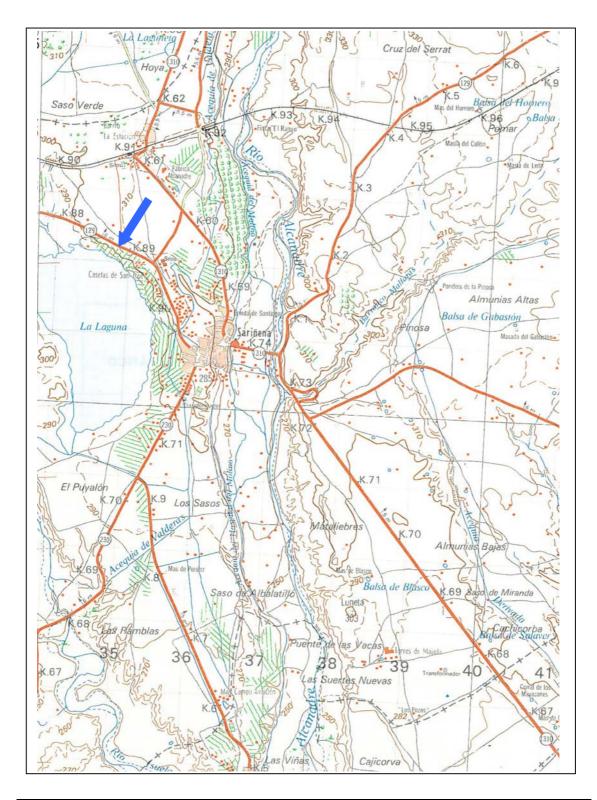

Provincia: Huesca

CCAA: Aragón Nº Mapa 1:50.000: 357

Altitud (m): 284

Ruta de acceso:

Al entrar en Sariñena deben seguirse las indicaciones (Laguna). El camino se aparta del pueblo y resigue la laguna. Una vez pasado el canal de desagüe, girar a mano derecha hasta llegar al primer observatorio. El acceso se encuentra a mano derecha, antes de llegar al observatorio. Antes de muestrear la laguna es recomendable presentarse en el Centro de Interpretación, ya que es un espacio natural protegido (Reserva de aves).


30T

Huso:

FOTOGRAFÍAS DEL LAGO

PLANO DE SITUACIÓN Escala 1:50.000

1- Laguna de Sariñena

Red de lagos

Presiones e impactos					
Presiones hidromorfológicas	Presiones fisicoquímicas				
Represamientos Detracciones de agua Desecación Aportaciones de excedentes de riegos	Eutrofización Contaminación por vertidos directos Contaminación por aportes difusos				
Ahondamiento de la cubeta	Grado de intervención (CHE, 2005)				
Transformación de las riberas	X Alto Medio Bajo				
Comentario a las presiones e impactos					
La laguna de Sariñena forma parte de los Espacios Naturales Protegidos en Aragón, se trata de un Refugio de Fauna Silvestre y Zona de Especial Protección para las Aves (ZEPA). La puesta en regadío de la cuenca de la laguna dulcifica el agua y aumenta tiempo de permanencia.					
Instalaciones e	existentes y usos				
Construcciones, infraestructuras y usos humanos	Usos				
Pista no asfaltada Calzada asfaltada Immuebles Motas o represas Telesilla	Agrícola 83% Ganadero % Silvícola % Urbano %				

Red de lagos

Elementos biológicos

Estación analizada

04-11 1 0000						
Código masa: L0968	Fecha muestreo	16/04/2008	22/08/2008	03/06/2009	10/09/2009	12/08/2010

Parámetros	Métricas	Valores	Valores	Valores	Valores	Valores
	InGA	1,43	1,03	0,60	0,21	0,23
Fitoplancton	Clo (mg Clo-a/m³)	60,6	48,91	65,35	78,13	98,16
	Biovolumen (mm ³ /L)	14,02	16,33	7,38	645,34	100,65
Otra flora acuática	Riqueza específica	2	2	2	2	2
Otra nora acuatica	Cobertura total de helófitos (%)	95	95	95	95	95
Fauna bentónica de invertebrados	QAELS	0,85	1,23	0,90	0,95	1,00

Comentarios

Elementos hidromorfológicos que afectan a los elementos biológicos

Régimen hidrológico

No está conectado con aguas subterráneas.

En los muestreos realizados en primavera y verano de 2009 y en verano 2010 no se apreciaron cambios de nivel respecto a los niveles observados en los muestreos de 2008.

Condiciones morfológicas del lago

Predomina una pendiente entre el 25 y el 50%. La profundidad máxima del lago es de más de 3 m. La vegetación de ribera está alterada por el uso agrícola (campos de trigo alrededor del lago). Existe un cinturón de helófitos que ocupa el perímetro del lago de manera continua, formado por Phragmites australis, Typha angustifolia y Scirpus lacustris, junto con comunidades de Tamarix sp.

Elementos químicos y fisicoquímicos que afectan a los elementos biológicos

Estación analizada

Código masa:	L0968	16/0	4/2008	22/08/2008		
Parámetros	Métricas	Valor	Estado según Ind. FQ	Valor	Estado según Ind. FQ	
	D.S. (m)	-	NC	-	NC	
Transparencia	Turbidez (clases) ¹	4	NC	2	NC	
1	Color	Verde grisáceo	NC	Verde grisáceo	NC	
Condiciones térmicas	Temperatura (°C)	17	NC	26,4	NC	
Cond. de oxigenación	O 2 dis (mg/L)	6,6	NC	5,1	NC	
Salinidad	Conductividad (µS/cm)	2510	Α	2710	Α	
	pH (Unid.)	8,3	NC	8,4	NC	
Estado de acidificación	Alcalinidad total (meq/L)	5,39	NC	5,84	NC	
	NH ₄ (mg/L)	0,25	NC	0,35	NC	
	NO ₃ (mg/L)	<0.005	NC	0,036	NC	
Condiciones relativas a	NO ₂ (mg/L)	<0.005	NC	0,007	NC	
los nutrientes	N.tot (mg/L)	0,198	NC	0,283	NC	
	P-PO ₄ (mg/L)	0,043	NC	0,016	NC	
	P.tot (mg/L)	0,210	Α	0,161	А	

		03/0	6/2009	10/0	9/2009
Parámetros	Métricas	Valor	Estado según Ind. FQ	Valor	Estado según Ind. FQ
	D.S. (m)	-	NC	-	NC
Transparencia	Turbidez (clases) ¹	2	NC	3	NC
	Color	Verde grisáceo	NC	Verde grisáceo	NC
Condiciones térmicas	Temperatura (°C)	29,1	NC	27,7	NC
Cond. de oxigenación	O ₂ dis (mg/L)	12,4	NC	9,9	NC
Salinidad	Conductividad (µS/cm)	2280	Α	2220	Α
	pH (Unid.)	8,9	NC	9,0	NC
Estado de acidificación	Alcalinidad total (meq/L)	5,18	NC	5,42	NC
	NH ₄ (mg/L)	0,20	NC	0,20	NC
Condiciones relativas a	NO ₃ (mg/L)	0,079	NC	0,011	NC
los nutrientes	NO ₂ (mg/L)	0,006	NC	<0.005	NC
ios numentes	P-PO ₄ (mg/L)	0,010	NC	0,016	NC
	P.tot (mg/L)	0,108	Α	0,190	Α

		11/08/2010		
Parámetros	Métricas	Valor	Estado según Ind. FQ	
	D.S. (m)		NC	
Transparencia	Turbidez (clases) ¹	4	NC	
	Color	Verde	NC	
Condiciones térmicas	Temperatura (°C)	24,5	NC	
Cond. de oxigenación	O ₂ dis (mg/L)	8,4	NC	
Salinidad	Conductividad (µS/cm)	2.620	NA	
	pH (Unid.)	9,0	NC	
Estado de acidificación	Alcalinidad total (meq/L)	6,81	NC	
	NH ₄ (mg/L)	0,40	NC	
Condiciones relativas a	NO ₃ (mg/L)	0,097	NC	
los nutrientes	NO ₂ (mg/L)	0,085	NC	
los numentes	P-PO ₄ (mg/L)	0,133	NC	
	P.tot (mg/L)	0,222	Α	

NA: No alterado, A: Alterado, NC: No computa

(1)Turbidez (Clases):

¹⁼ transparentes; 2= algo turbias; 3= turbias; 4= muy turbias

imavera	No Comentarios:		pri	mavera	No Comentario)S:
2008: X	Si Comentarios:			2009: X verano	Si Comentario	os:
2010: X erano	Si Comentarios:					
luación del E	STADO ECOLOGICO DEI	_ LAGO				
	Índice	2008 primavera	2008 verano	2009 primavera	2009 verano	2010 verano
	Conc. Clorofila (mg Clo-a/m³) Biovol. total fitopl. (mm3/L)	findice calidad 60,60 Malo (c) -	indice calidad 48,91 Malo (c) -	calidad Valor indice 65,35 Malo (c) -	78,13 Malo (c) -	98,16 Malo (c) -
Fitoplancton	InGa Nivel de calidad FITOPLANCTON	(c) - Malo	(c) -	(c) - Malo	(c) - Malo	(c) - Malo
Otra Flora Acuática	Riqueza especif. % cinturón helófitos Nivel de calidad OTRA FLORA	2 Def 95% MB	2 Def 95% MB	2 Def 95% MB	2 Def 95% MB	2 Def 95% MB
vertebrados	QAELS _{Ebro} Nivel de calidad FAUNA BENTÓNICA	(c) -	(c) -	(c) -	(c) -	(c) -
Cond. fis	lógico según elementos sico-químicas del lago romorfológicas del lago	Malo Mod o Inferior B o Inferior	Malo Mod o Inferior B o Inferior	Malo Mod o Inferior B o Inferior	Malo Mod o inferior B o Inferior	Malo Mod o inferior B o Inferior
(a) No muestre	ado ese año	Malo	Malo	Malo	Malo	Malo
(b) Lago seco (c) Métrica no c						
Comentarios	<u> </u>					

¿La situación del lago permitía obtener datos significativos?

Red de lagos

Fitoplancton

Fecha muestreo	16/04/2008

COMPOSICIÓN	ABUNDANCIA	BIOVOLUMEN	CUALITATIVO
OVANORUVTA	células/ml	mm ³ /L	
CYANOPHYTA	40.40		
Anabaenopsis sp.	1242	0,1707	+
Pseudanabaena cf. limnetica	70766	0,3682	1
BACILLARIOPHYCEAE			
Diatomeas no coloniales			
Amphora sp.			+
Cyclotella sp. 1	1552	0,3004	1
Cymbella sp.			2
Nitzschia acicularis			1
Nitzschia gracilis	20485	10,1631	3
EUGLENOPHYTA			
Colacium sp.	155	0,2498	4
Euglena acus			+
Lepocinclis sp.			3
CRYPTOPHYTA			
Chroomonas sp.	310	0,1118	
Cryptomonas erosa	931	1,9453	
CHLOROPHYTA			
Chlamydomonas sp. 2	466	0,0496	
Clorococales no coloniales			
Closteriopsis longissima			1
Lagerheimia genevensis	155	0,0097	+
Monoraphidium contortum	5742	0,0941	2
Monoraphidium griffithii	310	0,0239	1
Monoraphidium minutum	3259	0,0809	
Tetraedron caudatum			1
Clorococales coloniales			
Actinastrum hantzschii			1
cf. Dictyosphaerium sp.	621	0,0088	
Oocystis sp.	1242	0,3654	
Pediastrum boryanum			3
Scenedesmus acuminatus			1
Scenedesmus ecornis	621	0,0298	1
Scenedesmus intermedius			+
Scenedesmus quadricauda	310	0,0265	1
Tetrastrum staurogeniaeforme	621	0,0290	+

TOTAL	108788 células/mL	14,03 mm ³ /
Porcentaje de cianobacterias	3,84%	
Concentración clorofila (mg Clo-a/m³)	60,60	
InCA	1 //3	

Clases de abundancia	% de presencia
+	presencia
1	<1%
2	1-10%
3	11-30%
4	31-60%
5	>60%

Fitoplancton

Fecha muestreo	22/08/2008

COMPOSICIÓN	ABUNDANCIA	BIOVOLUMEN	CUALITATIVO
CYANOPHYTA	células/ml	mm ³ /L 0.0947	
Lyngbya sp. (fil/mL)	245	,	2
Merismopedia cf. glauca	345	0,1643	3
,	27589	0,9245	+
Spirulina sp.	69	0,0580	+
BACILLARIOPHYCEAE		0.4540	
Diatomeas no coloniales		0,4542	
Cyclotella sp. 1	6208	1,2017	
Eunotia sp.	138	0,6858	+
Navicula sp.	138	0,1121	+
Nitzschia gracilis	6828	3,3875	3
Nitzschia sp.	276	0,1146	+
Diatomeas coloniales		0,0000	
EUGLENOPHYTA			
Colacium sp.			3
Euglena acus			+
Lepocinclis cf. texta	138	3,6393	3
Trachelomonas sp.	69	0,1564	
DINOPHYTA		0,0505	
Gymnodinium sp.	552	0,6119	
CRYPTOPHYTA		0,3252	
Cryptomonas erosa	1862	3,8906	+
Plagioselmis nannoplanctica	552	0,0483	
CHLOROPHYTA			
Chlamydomonas sp. 2	3587	0,3817	
Closterium cf. acutum	138	0,0371	
Spirogyra sp.			+
Clorococales no coloniales		0,0172	
Franceia cf. echidna	207	0,0531	
Monoraphidium circinale	276	0,0020	
Monoraphidium contortum	2207	0,0362	1
Monoraphidium griffithii	345	0,0266	
Monoraphidium minutum	690	0,0171	
Schroederia setigera	138	0,0070	+
Tetraedron minimum	69	0,0658	+
Clorococales coloniales	00	0,0583	'
Botryococcus braunii		0,0000	+
cf. Dictyosphaerium sp.	552	0,0078	'
Coelastrum astroideum	1173	0,1269	+
		<u>`</u>	T
Crucigenia tetrapedia	828	0,0155	
Didymogenes palatina	3725	0,1068	
Nephrochlamys willeana	966	0,0051	
Oocystis sp.	69	0,0203	
Pediastrum boryanum	400	0.0000	+
Scenedesmus ecornis	138	0,0066	
Scenedesmus intermedius	207	0,0101	
Scenedesmus linearis	2759	0,2266	
Scenedesmus opoliensis	276	0,0817	
Scenedesmus quadricauda	552	0,0471	
Tetrastrum staurogeniaeforme	1104	0,0515	

TOTAL	64770 células/mL	
Porcentaje de cianobacterias	7,02%	
Concentración clorofila	48,91	
InGA	1,03	

Clases de abundancia	% de presencia
+	presencia
1	<1%
2	1-10%
3	11-30%
4	31-60%
5	>60%

16,33 mm³/L

Fitoplancton

Fecha muestreo	03/06/2009

COMPOSICIÓN	ABUNDANCIA	BIOVOLUMEN	CUALITATIVO
	células/mL	mm³/L	COMERNATION
CYANOPHYTA			
Anabaenopsis circularis (fil/mL)	173	0,1027	
Aphanocapsa delicatissima (col/mL)	87	0,0701	
Merismopedia marssonii	5547	0,0454	
Phormidium okenii (fil/mL)			3
Planktolyngbya contorta (fil/mL)	87	0,0013	
Planktolyngbya limnetica (fil/mL)	87	0,0273	
Planktothrix isothrix (fil/mL)	433	1,0202	2
Pseudanabaena arcuata (fil/mL)	1127	0,0991	
Pseudanabaena limnetica (fil/mL)	1733	0,4914	
BACILLARIOPHYCEAE			
Diatomeas no coloniales			
Fragilaria ulna			
Gyrosigma sp.			+
Nitzschia sp.	433	0,0977	
НАРТОРНҮТА			
Chrysochromulina parva	173	0,0060	
EUGLENOIDEA			
Colacium sp.	260	0,3407	3
Euglena salina	200	0,0101	4
Lepocinclis ovum			+
Phacus Iongicauda			2
Phacus tortus			2
XANTOPHYCEAE			2
Nephrodiella lunaris	173	0,0156	
•	+	•	
Trachydiscus sp.	2600	0,4669	
CRYPTOPHYTA	470	0.0700	
Cryptomonas ovata	173	0,3796	
Cryptomonas rostratiformis	87	0,2427	
Rhodomonas minuta	1040	0,0909	
CHLOROPHYTA			
Chloromonas sp.	87	0,0335	
Spirogyra sp.			3
Clorococales no coloniales			
Chlorella sp.	1733	0,0418	
Lagerheimia genevensis	87	0,0043	
Lagerheimia wratislaviensis	260	0,1768	
Monoraphidium arcuatum	260	0,0061	
Monoraphidium contortum	1473	0,0241	
Monoraphidium komarkovae	5547	0,4008	
Monoraphidium minutum	1993	0,0477	
Monoraphidium tortile	3813	0,1198	
Tetraedron caudatum	173	0,0209	
Tetraedron minimum	2080	1,9380	
Treubaria triappendiculata	260	0,1576	
Clorococales coloniales			
Actinastrum hantzschii	607	0,0473	
Botryococcus braunii (col/mL)		<u> </u>	3
Crucigenia tetrapedia	1733	0,0337	

Dictyosphaerium chlorelloides	1733	0,1469	
Dictyosphaerium pulchellum	347	0,0423	
Didymogenes palatina	693	0,0161	
Nephrochlamys willeana	347	0,0030	
Oocystis parva	347	0,0454	
Pediastrum boryanum			2
Scenedesmus armatus	347	0,0270	
Scenedesmus dimorphus	1907	0,2359	
Scenedesmus ecornis	1907	0,0851	
Scenedesmus linearis	347	0,0279	
Scenedesmus pecsensis	347	0,1258	
Scenedesmus quadricauda	520	0,0442	
Tetrachlorella incerta	520	0,0155	
Tetrastrum staurogeniaeforme	347	0,0162	

7,38 mm³/L

TOTAL	44028 células/mL
Porcentaje de cianobacterias	23,60%
Concentración clorofila (mg Clo-a/m³)	65,35
InGA	0,60

Clases de abundancia	% de presencia
+	presencia
1	<1%
2	1-10%
3	11-30%

Fitoplancton

Fecha muestreo	10/09/2009

COMPOSICIÓN	ABUNDANCIA	BIOVOLUMEN	CUALITATIVO
CYANOPHYTA	células/mL	mm ³ /L	
	0040	0.0440	0
Anabaenopsis circularis (fil/mL)	3943	2,3412	2
Aphanocapsa delicatissima (col/mL)	563	7,9592	
Aphanothece smithii (col/mL)	8450	553,0512	
Cylindrospermopsis raciborskii (fil/mL)	563	0,4255	
Merismopedia marssonii	36053	0,2950	
Planktolyngbya contorta (fil/mL)	998790	15,1660	4
Planktolyngbya limnetica (fil/mL)	55207	17,3438	
Pseudanabaena arcuata (fil/mL)	1690	0,1487	2
Pseudanabaena cf. articulata (fil/mL)	147030	18,4763	3
Pseudanabaena galeata (fil/mL)	1127	0,1664	2
Pseudanabaena limnetica (fil/mL)	2817	0,7987	
BACILLARIOPHYCEAE			
Diatomeas no coloniales			
Fragilaria ulna			1
Nitzschia sp.	3380	5,3709	4
НАРТОРНҮТА			
Chrysochromulina parva	7887	0,2749	
EUGLENOIDEA			
Colacium sp.			2
Lepocinclis salina			+
XANTOPHYCEAE			
Nephrodiella lunaris	2817	0,2539	
CHLOROPHYTA			
Clorococales no coloniales			
Monoraphidium contortum	1127	0,0185	1
Monoraphidium komarkovae			1
Monoraphidium minutum	563	0,0135	
Schroederia setigera	563	0,0336	
Tetraedron caudatum	563	0,0681	
Tetraedron minimum	563	0,5246	
Clorococales coloniales			
Dictyosphaerium chlorelloides	263640	22,3460	3
Scenedesmus dimorphus	1127	0,1394	
Scenedesmus ecornis	1127	0,0503	
Scenedesmus quadricauda			2
Scenedesmus spinosus	2253	0,0705	

TOTAL	1541843 células/mL
Porcentaje de cianobacterias	8,50%
Concentración clorofila (mg Clo-a/m³)	78,13
InGA	0.21

645,34 mm³/L

Clases de abundancia	% de presencia		
+	presencia		
1	<1%		
2	1-10%		
3	11-30%		
4	31-60%		
5	>60%		

Fitoplancton

Fecha muestreo	12/08/2010

COMPOSICIÓN	ABUNDANCIA células/mL	BIOVOLUMEN mm ³ /L	CUALITATIVO
СУАПОРНУТА	coldido/IIIL	111111 / L	
Anabaenopsis elenkenii	3794	0,3017	1
Aphanocapsa delicatissima (col/mL)	17245	72,2357	1
Cylindrospermopsis raciborskii (fil/mL)	2414	0,3792	1
Merismopedia tenuissima	44147	0,0441	+
Planktolyngbya contorta (fil/mL)	144857	5,6885	2
Planktolyngbya limnetica (fil/mL)	17935	3,1693	
Planktothrix agardhii	17955	3,1093	1
Pseudanabaena limnetica (fil/mL)	11027	2.4674	ı
BACILLARIOPHYCEAE	11037	3,4674	
Diatomeas no coloniales			
	690	4.0044	
Cyclostephanos dubius		4,0644	
Fragilaria sp.	345	0,0440	
Fragilaria ulna	2000	4.0005	+
Nitzschia acicularis	2069	1,2825	
Nitzschia sp.	2069	0,0621	1
CHRYSOPHYCEAE (sensu lato)			
Crisofíceas no coloniales			
Pseudopedinella sp.	3449	0,2257	
НАРТОРНҮТА			
Chrysochromulina parva	3104	0,0872	
EUGLENOPHYTA			
Colacium sp.			1
Euglena oxyuris	25	1,0659	
Euglena spathirhyncha	34	0,3121	2
Lepocinclis salina	228	2,5410	5
Phacus longicauda	8	0,5370	
Phacus orbicularis			+
Phacus pyrum			+
DINOPHYTA			
Gymnodinium cnecoides	345	0,1539	
Peridinium sp.			1
СКҮРТОРНҮТА			
Cryptomonas erosa	345	0,1397	+
Rhodomonas minuta	1035	0,1044	
CHLOROPHYTA			
Chlamydomonas sp.	690	0,0452	
Planctonema lauterbornii	690	0,0390	+
Clorococales no coloniales			
Chlorella sp.	4484	0,1531	
Monoraphidium contortum	2414	0,0870	
Monoraphidium griffithii	345	0,0277	
Monoraphidium tortile	1380	0,0517	+
Schroederia setigera	345	0,0328	
Tetraedron minimum	1035	0,8733	+
Clorococales coloniales	1000	5,5755	<u>'</u>
Botryococcus braunii			1
	15176	0,3202	+
Crucigenia tetrapedia Dictyosphaerium chlorelloides	5518	0,3202	+

Dictyosphaerium pulchellum			+
Didymogenes palatina	690	0,0030	
Nephrochlamys willeana	1724	0,0143	
Oocystis parva	5518	0,5958	
Pediastrum boryanum			+
Scenedesmus acuminatus	4139	0,8494	+
Scenedesmus apiculatus	1380	0,3121	
Scenedesmus linearis	5518	0,6995	1
Scenedesmus quadricauda	1380	0,1393	
Tetrachlorella incerta	2069	0,0842	
Tetrastrum staurogeniaeforme	1380	0,0623	

100,65 mm³/L

TOTAL	311050 células/mL
Porcentaje de cianobacterias	12,92%
Concentración clorofila (mg Clo-a/m³)	98,16
InGA	0,23

Clases de abundancia	% de presencia		
+	presencia		
1	<1%		
2	1-10%		
3	11-30%		
4	31-60%		
5	>60%		

Red de lagos

Vegetación acuática

Fecha muestreo	16/04/2008	22/08/2008	03/06/2009	10/09/2009	12/08/2010
COMPOSICIÓN					
CYANOPHYTA					
Nostocaceae					
Anabaena sp	+	+	+	+	
CHLOROPHYTA					
Zygnemataceae					
Mougeotia sp	+	+	+	+	
Oedogoniaceae					
Oedogonium sp	+	+	+	+	
MAGNOLIOPHYTA					
LILIOPSIDA					
Poaceae					
Phragmites australis	+	+	+	+	+
Typhaceae					
Typha sp.	+	+	+	+	+
Riqueza especifica (nº de taxones de macrófitos)	2	2	2	2	2
% cinturón de helófitos	95%	95%	95%	95%	95%

Red de lagos

Fauna bentónica de invertebrados

Macroinvertebrados

Fecha muestreo	16/04/2008	22/08/2008	03/06/2009	10/09/2009	12/08/2010
	1				
COMPOSICIÓN	Abundancia			Abundancia	Abundancia
	relativa (%)				
Ph. CNIDARIOS					
Hydra sp.				1,49	
Ph. ANELIDA					
Cl. Oligochaeta		51,61	35,00	44,78	40
O. Tubificida					
F. Tubificidae					
Tubifícidos c.s.c.	11,76				
F. Naididae			+		
Ph. ARTHROPODA					
Cl. Aracnida					
F. Acari					10
Hydracarina sp.	2,94				
Cl. Ostracoda			22,50	20,90	
CI. Malacostracea					
O. Decapoda				1,49	
Supercl. INSECTA					
CI. Euentomata					
O. Ephemeroptera					
F. Baetidae				7,46	
Cloëon sp.	4,41				
O. Hemiptera					
F. Gerridae					
Gerris sp.	1,47				
F. Corixidae		3,23	3,13		10
Micronecta sp.	55,90		36,25		
F. Veliidae					
Microvelia sp.			0,63		
O. Odonata					
F. Aeshnidae			0,63		
O. Coleoptera	1,47				
F. Hydrophilidae	1,47				
Coelostoma sp.	1,47				
F. Noteridae					
Noterus sp.	7,35			1,49	
F. Dryopidae					
Dryops sp.			0,63		
O. Diptera					
F. Chironomidae	8,82	45,16	1,25	20,90	40
F. Sciomyizidae				1,49	
F. Tipulidae	1,47				
O. Tricoptera					
F. Ecnomidae					
Ecnomus sp.	1,47				
Total (%	100	100	100	100	100
Nº IND./MUESTRA	32	31	160	67	10
Nº TAXONES	12	3	7	6	3
RIC	16	6	8	8	4

Fauna bentónica de invertebrados

Microinvertebrados

Fecha muestreo	16/04/2008	22/08/2008	03/06/2009	10/09/2009	12/08/2010
	<u> </u>	-	-	-	
COMPONICIÓN	Abundancia	Abundancia	Abundancia	Abundancia	Abundancia
COMPOSICIÓN	relativa (%)				
Ph. ARTHROPODA					
SubPh. Crustacea					
Cl. Branchiopoda					
Daphnia magna	2,87		0,85		0,12
Daphnia galeata		9,02			
Daphnia pulicaria	2,35				
Hyalodaphnia	1,83				
Chydorus sphaericus	10,97		0,28	2,00	
Alona rectangula	4,96		2,56		1,12
Oxurella tenuicaudis					0,25
Leydigia sp					0,50
Cl. Copepoda					
Acanthocyclops robustus	71,54	83,19		3,00	94,65
Megacyclops viridis			78,41		
Cyclops vicinus					0,12
Cl. Ostracoda		2,09	17,90	95,00	
Cypridopsis sp	5,48	1,61			
Sn1					3 24

Red de lagos

Vista de la zona de acceso al lago (junto observatorio aves) en 2007

Vista de la zona litoral del lago, recubierta de *Phragmites* sp.

ADICIONAL INFORME LAGUNA DE SARIÑENA 2007-2010

Durante el año 2022 se han revisado los datos de La Laguna de Sariñena recopilados durante los años 2017 a 2010, en aplicación del Real Decreto 817/2015, de 11 de septiembre, por el que se establecen los criterios de seguimiento y evaluación del estado de las aguas superficiales y las normas de calidad ambiental, a partir de la trasposición de la Directiva Marco del Agua (DMA).

La metodología utilizada ha consistido en obtener del informe de dicho año los datos necesarios para estimar de nuevo el estado trófico y el estado ecológico y, recalcular el valor correspondiente en cada variable y en el estado final del lago, utilizando las métricas publicadas en 2015, lo que permite comparar el estado de los lagos en un ciclo interanual de forma homogénea.

En cada apartado considerado se indica la referencia del apartado del informe original al que se refiere este trabajo adicional.

1. EVALUACIÓN DEL ESTADO

El **estado** de una masa de agua es el grado de alteración que presenta respecto a sus condiciones naturales, y viene determinado por el *peor valor* de su estado ecológico y químico.

- El <u>estado ecológico</u> es una expresión de la calidad de la estructura y el funcionamiento de los ecosistemas acuáticos asociados a las aguas superficiales en relación con las condiciones de referencia (es decir, en ausencia de alteraciones). Se determina a partir de indicadores de calidad (biológicos y fisicoquímicos).
- El <u>estado químico</u> de las aguas es una expresión de la calidad de las aguas superficiales que refleja el grado de cumplimiento de las normas de calidad ambiental de las sustancias prioritarias y otros contaminantes.

El estado de las masas de agua superficial quedará determinado por el peor valor de su estado ecológico y estado químico.

El estado ecológico de las aguas superficiales se clasificará como muy bueno, bueno, moderado, deficiente o malo. Para clasificar el estado ecológico de las masas de agua

superficial se aplicarán los indicadores de los elementos de calidad, los valores del anexo II del Real Decreto 817/2015 y las NCA calculadas para los contaminantes específicos o en su caso, las NCA del anexo V para las sustancias preferentes.

El estado químico de las aguas superficiales se clasificará como bueno o no alcanza el buen estado. Para clasificar el estado químico se aplicarán las NCA de las sustancias incluidas en el Anexo IV del Real Decreto 817/2015 (sustancias prioritarias y otros contaminantes).

La clasificación del estado de las masas llevará asociado un nivel de confianza que se calculará conforme a los criterios especificados en el Anexo III B del citado Real Decreto.

La clasificación del estado ecológico se realizará con los resultados obtenidos para los indicadores correspondientes a los elementos de calidad biológicos, químicos y fisicoquímicos, e hidromorfológicos y vendrá determinado por el elemento de calidad cuyo resultado final sea el más desfavorable.

La clasificación del estado químico de una masa de agua se evalúa mediante el análisis de conformidad de la concentración de las sustancias prioritarias y otros contaminantes con las NCA recogidas en el Anexo IV. Corresponde a la clasificación peor de cada una de las sustancias del anexo IV.

2. ELEMENTOS DE CALIDAD BIOLÓGICOS (EC-BIO)

2.1 Composición, abundancia y biomasa de Fitoplancton (EC-BIO)

Datos obtenidos de una muestra integrada (MFIT) (dos veces al año): en marzo-mayo (lagos temporales); en mayo-agosto (lagos permanentes someros) y en julio-sept (lagos permanentes profundos).

Se aplica el protocolo MFIT-2013 Versión 2, utilizando dos métricas:

- Concentración de clorofila a (CONCLOA_ZF). Fórmula tricromática de Jeffrey y Humphrey (1975). Media de los valores de las métricas durante los dos análisis.
- Biovolumen total de fitoplancton (BVOL_T_FTP). Sumatorio de biovolúmenes de los taxones de fitoplancton para cada análisis y el dato final será la media de los valores de biovolumen total obtenidos en los análisis de los dos muestreos anuales.

Para la evaluación del estado ecológico de las masas de agua de la categoría lago mediante el elemento de calidad fitoplancton, se deberá seguir el procedimiento descrito a continuación.

Las métricas de fitoplancton aplicables a lagos son únicamente aquellas que tienen en cuenta aspectos de abundancia y biomasa, es decir, la concentración de clorofila a y el biovolumen total de fitoplancton. Son dependientes del tipo de lago, y se consideran según la tabla A1.

Tabla A1. Métricas aplicables a los tipos de lagos para la evaluación del estado ecológico.

Tipos	Clorofila a	Biovolumen fitoplancton
1	Si	Si
2	Si	Si
3	Si	Si
4	Si	Si
5	Si	No aplicable
10	Si	Si
11	Si	Si
15	Si	Si
16	Si	No aplicable
18	Si	No aplicable
20	Si	No aplicable
21	Si	No aplicable
22	Si	No aplicable
23	Si	No aplicable
24	Si	No aplicable
26	Si	No aplicable

El fitoplancton es un indicador de respuesta trófica y, por lo tanto, integra todas las variables causales, de modo que está influido por otros condicionantes ambientales además de estarlo por los niveles de nutrientes. Se utilizan dos parámetros como estimadores de la biomasa algal en los índices: concentración de clorofila a en la zona fótica (µg/L) y biovolumen total de fitoplancton (mm³/L).

Al contar en este estudio mayoritariamente con sólo una campaña de muestreo, y por tanto no contar con una serie temporal que nos permitiera la detección del máximo anual, se utilizan las clases de calidad relativas a la media anual (tabla A2). La utilización de los límites de calidad relativos a la media anual de clorofila se basó en el hecho de que los muestreos fueron realizados durante la estación de verano. Según la bibliografía limnológica general, el verano coincidiría con un descenso de la producción primaria motivado por el agotamiento de nutrientes tras el pico de producción típico de finales de primavera. Por ello, la utilización de los límites o rangos relativos al máximo anual resultaría inadecuada.

Concentración de clorofila a

Del conjunto de pigmentos fotosintetizadores de las microalgas de agua dulce, la clorofila *a* se emplea como un indicador básico de biomasa fitoplanctónica. Todos los grupos de microalgas contienen clorofila *a* como pigmento principal, pudiendo llegar a representar entre el 1 y el 2 % del peso seco total. La clasificación del estado ecológico de acuerdo con la concentración de clorofila *a* se indica en la tabla A2.

Tabla A2. Límites de cambio de clase del estado ecológico y condición de referencia según tipo de lago y el RCE calculado de la concentración de clorofila *a*.

Límite de cambio de clase estado ecológico	Condición de referencia (mg/m³)	Muy Bueno / Bueno	Bueno / Moderado	Moderado / Deficiente	Deficiente / Malo
Tipo 1	1,0	0,67	0,45	0,30	0,15
Tipo 2	0,9	0,64	0,42	0,29	0,15
Tipo 3	1,3	0,68	0,49	0,34	0,17
Tipo 4	1,5	0,65	0,43	0,26	0,13
Tipo 5	1,8	0,62	0,37	0,24	0,13
Tipo 10	2,5	0,71	0,46	0,32	0,18
Tipo 11	1,6	0,67	0,40	0,28	0,13
Tipo 15	2,7	0,71	0,46	0,32	0,19
Tipo 16	3,8	0,68	0,42	0,23	0,15
Tipo 18	3,5	0,66	0,42	0,25	0,15
Tipo 20	3,5	0,61	0,37	0,25	0,13
Tipo 21	3,2	0,59	0,32	0,21	0,10
Tipo 22	3,0	0,58	0,38	0,26	0,13
Tipo 23	4,7	0,62	0,43	0,25	0,12
Tipo 24	4,9	0,63	0,46	0,26	0,12
Tipo 26	5,5	0,66	0,47	0,27	0,14

Biovolumen algal

El biovolumen es una medida mucho más precisa de la biomasa algal, por tener en cuenta el tamaño o volumen celular de cada especie, además del número de células. La clasificación del estado ecológico de acuerdo al biovolumen de fitoplancton se indica en la tabla A3.

Tabla A3. Límites de cambio de clase del estado ecológico y condición de referencia según tipo de lago y el RCE del biovolumen algal del fitoplancton.

Límite de cambio de clase estado ecológico	Condición de referencia (mm³/L)	Muy Bueno / Bueno	Bueno / Moderado	Moderado / Deficiente	Deficiente / Malo
Tipo 1	0,7	0,64	0,38	0,24	0,12
Tipo 2	0,6	0,67	0,44	0,31	0,15
Tipo 3	1,4	0,67	0,55	0,37	0,18
Tipo 4	1	0,71	0,49	0,34	0,17
Tipo 10	0,7	0,58	0,34	0,26	0,13
Tipo 11	0,2	0,67	0,34	0,19	0,10
Tipo 15	1,5	0,65	0,48	0,32	0,19

Cálculo de Ratio de Calidad Ecológico (RCE)

Se debe seguir el procedimiento descrito en el Protocolo MFIT-2013 Versión 2 para el cálculo del RCE de cada uno de los cuatro parámetros:

Cálculo para clorofila a:

RCE= [(1/Chla Observado) / (1/Chla Condición de referencia)]

Cálculo para biovolumen:

RCE= [(1/biovolumen Observado) / (1/ biovolumen Condición de referencia]

Se utilizarán los valores de las Condiciones de Referencia (CR) de las métricas, para cada tipo de masa de agua, recogidos en la legislación.

Transformación de RCE a escalas numéricas equivalentes

Los valores de RCE obtenidos se deben transformar a escalas numéricas equivalentes para normalizarlos a una escala lineal común.

Los Ratios de Calidad Ecológica transformados se obtendrán mediante la aplicación de la siguiente fórmula, que no es más que una interpolación lineal entre los límites de

cambio de clase de los Ratios de Calidad Ecológica que se han establecido para cada indicador, y los que se corresponden con una escala lineal.

RCE_trans = Val.trans_i + (RCE-Val_i) x (Val.tran_s – Val.trans_i) / (Val_s – Val_i)

Donde:

- RCE trans = Ratio de Calidad Ecológica transformado
- RCE = Ratio de Calidad Ecológica sin transformar
- Val.transi = Valor de RCE de cambio de clase estado ecológico inferior transformado
- Vali = Valor de RCE de cambio de clase de estado ecológico inferior sin transformar
- Val.trans_s = Valor de RCE de cambio de clase de estado ecológico superior transformado
- Vals = Valor de RCE de cambio de clase de estado ecológico superior sin transformar

Se utilizarán para cada tipo de masa de agua los valores del RCE de las métricas recogidos en la legislación, con los que se comparará el RCE sin transformar de la muestra (Val_i). Los valores de RCE de cambio de clase de estado ecológico superior sin transformar (Val_s) –que constituyen el límite superior de una clase de estado ecológico-se calcularán como el valor inmediatamente inferior con 2 decimales de los valores del RCE de cambio de clase de estado ecológico inferior sin transformar, recogidos en la legislación.

Para el cálculo, se utilizarán los Val.trans_s y Val.trans_i que figuran en la tabla siguiente:

Clase de estado	Valores de RCE de cambio de clase de estado ecológico superior transformado (Val.trans _s)	Valores de RCE de cambio de clase de estado ecológico inferior transformado (Val.trans _i)
Muy bueno	1,00	0,80
Bueno	0,79	0,60
Moderado	0,59	0,40
Deficiente	0,39	0,20
Malo	0,19	0,00

Combinación de RCE trasformados para la clasificación del estado ecológico

La combinación de los RCE transformados de los indicadores para la clasificación del estado ecológico del elemento de calidad composición, abundancia y biomasa de fitoplancton se realizará utilizando la siguiente fórmula:

RCE trans final (MFIT) = 0,75 RCE trans (CONCLOa) + 0,25 RCE trans (BVOLTOT)

El valor final de la combinación de los RCE transformados (RCE trans final) se utilizará para la clasificación del estado ecológico, de acuerdo a la escala de clases de estado ecológico indicada en el apartado anterior.

2.2. Composición y abundancia de Otra Flora Acuática (macrófitos) (EC-BIO)

El cálculo se realiza a partir de una muestra anual realizada en un momento favorable para la vegetación.

Se sigue el protocolo OFALAM-2013. Se elige el peor valor del índice que posee varias métricas (OFALAM). No se aplica en lagos de los tipos 1 a 4 situados a más de 2300m de altitud.

- Presiones de tipo HM: Se hace la media. (OFALAM_P_HM)
 - Presencia/Ausencia de hidrófitos (PRESENCIA_HID): tipos 1-8, y entre éstos, sólo en aquéllos que de manera natural puedan tenerlos. Se excluyen lagos situados a altitud mayor a 2300m, que discrimina a algunos de los lagos de los tipos de alta montaña (tipos 1-4).
 - Riqueza de especies de macrófitos típicos (RIQ_SPS_MAF): tipos 10-12, 14-19 y 24-29.
 - Cobertura total de hidrófitos típicos (COBER_T_HID): tipos 10-12, 14-16, 18 y 20-29.
 - Cobertura total de helófitos típicos (COBER_T_HEL): tipos 10-12, 14-16, 18 y 20-29.
 - Cobertura total de macrófitos típicos (hidrófitos+helófitos)
 (COBER_T_MAF_L): se aplica sólo a los tipos de lagos con hidroperiodo temporal (tipos 17 y 19). No hay en la CHE de esas tipologías.
- Presión por eutrofización: Se coge el valor de cobertura de especies de macrófitos indicadoras de condiciones eutróficas (COBER_SPS_EUT): todos los tipos de lagos naturales excepto en los tipos 9, 13 y 30 (que no se encuentran en la Demarcación del Ebro).
- Presión por introducción de especies exóticas: Se coge el valor de cobertura de especies exóticas de macrófitos (COBER_SPS_EXO): todos los tipos de lagos naturales excepto en los tipos 9, 13 y 30 (que no se dan en la CHE).

2.3. Composición y abundancia de Fauna bentónica de Invertebrados (EC-BIO).

Se toma una muestra anual. Se sigue el protocolo ML-L-I-2013 e IBCAEL 2013. Se coge el valor del índice (IBCAEL). La fórmula de cálculo es la siguiente:

El índice ABCO (ABUN_BCO) se obtiene a partir de una muestra de microinvertebrados bentónicos.

El índice RIC (RIC) se obtiene a partir de una muestra de macroinvertebrados bentónicos.

3. ELEMENTOS DE CALIDAD FISICOQUÍMICOS (EC-FQ)

Se debe tomar cuatro muestras anuales de la zona fótica, calculándose hasta 2019 como la media de los valores anuales. A partir de 2020 se calcula con la mediana de los valores anuales como establece la Guía de Estado. Si solo se ha realizado un muestreo, se tomará ese único valor.

Se elige el peor valor entre los siguientes indicadores de calidad (MIN_FQ) según los rangos señalados en RD 817/2015:

ELEMENTOS DE CALIDAD FQ (EC-FQ)	INDICADORES DE CALIDAD FQ (IC-FQ)
Transparencia	Disco de Secchi (tipos 1-7, 9-12 y 14-15) (SECCHI)
Estado de acidificación	pH (PH_ZF) (todos los tipos)
Condiciones relativas a nutrientes	P total (P_TOT) (tipos 1-12,14-24 y 26-30)

3.1. Transparencia

La transparencia es un elemento válido para evaluar el estado ecológico del lago; tiene alta relación con la productividad biológica; y además tiene rangos establecidos fiables y de utilidad para el establecimiento de los límites de clase del estado ecológico. Se ha evaluado a través de la profundidad de visión del disco de Secchi (DS), considerando su valor para la obtención de las distintas clases (tabla A4).

Tabla A4. Límites de cambio de clase de estado ecológico según la profundidad de visión del Disco de Secchi estimada en metros.

Clase de estado ecológico	Muy Bueno/Bueno	Bueno/Moderado
Tipo 1	6,0	4,5
Tipo 2	6,0	4,0
Tipo 3	4,5	3,0
Tipo 4, 10, 15	4,0	3,0
Tipo 5, 11, 16, 18, 20, 21, 22, 23, 24, 26	No considerado	

3.2. pH

El pH es un elemento válido para evaluar el estado ecológico del lago; tiene alta relación con la productividad biológica; y además tiene rangos establecidos fiables y de utilidad para el establecimiento de los límites de cambio de clase de estado ecológico. Se ha utilizado la medida de pH, considerando su valor para la obtención de las distintas clases (tabla A5).

Tabla A5. Límites de cambio de clase de estado ecológico según el valor de pH.

Clase de estado ecológico	Bueno/Moderado	Moderado/Deficiente
Tipo 1, 3	6,0 - 9,0	≤ 6 o ≥ 9
Tipo 2, 4, 15, 18, 24, 26	7,0 – 9,5	≤7 o ≥ 9,5
Tipo 5	6,0 - 9,5	≤ 6 o ≥ 9,5
Tipo 10, 11	7,0 - 9,7	≤7 o≥9,7
Tipo 16	6,5 - 9,5	≤ 6,5 o ≥ 9,5
Tipo 20, 21, 22, 23	7,5 - 10,5	≤ 7,5 o ≥ 10,5

3.3. Concentración de nutrientes

En este caso se ha seleccionado el fósforo total (P_TOT), ya que su presencia a determinadas concentraciones en un lago o masa de agua supone procesos de eutrofización, pues en la mayoría de los casos es el principal elemento limitante para el crecimiento de las algas.

Se ha empleado el resultado obtenido en la muestra integrada, considerando los criterios de la OCDE especificados en la tabla A6 (OCDE, 1982) adaptado a los intervalos de calidad del RD 817/2015.

Tabla A6. Límites de cambio de clase de estado ecológico según la concentración de fósforo total estimado en μg/L.

Clase de estado ecológico	Muy Bueno/Bueno	Bueno/Moderado
Tipo 1, 2	8,0	12,0
Tipo 3, 4	12,0	18,0
Tipo 5	18,0	26,0
Tipo 10	16,0	28,0
Tipo 11	12,0	22,0
Tipo 15	16,0	28,0
Tipo 16*	20,0	45,0
Tipo 18*	22,0	50,0
Tipo 20, 21, 22, 23*	40,0	100,0
Tipo 24, 26*	30,0	80,0

^{*} En lagunas someras de los tipos 16 al 30, en caso que la abundancia de la avifauna justifique los valores elevados de P_TOT, esta variable no se considerará en el cálculo.

Si se toman varios datos anuales, se hace la *mediana* de los valores anuales.

3.4. Sustancias preferentes y contaminantes específicos de cuenca

Dentro de los indicadores fisicoquímicos también se tienen en cuenta las sustancias preferentes y contaminantes específicos de cuenca. El valor medio de los datos anuales se revisa para ver si *cumple o no con la Norma de Calidad Ambiental* (NCA) del *Anexo V del RD 817/2015*. Si *incumple* supone asignarle para los indicadores fisicoquímicos la categoría de *moderado* (tabla A7).

Tabla A7. Límite de cambio de clase de estado ecológico para sustancias preferentes y contaminantes específicos de cuenca.

Clase de estado ecológico	Muy Bueno	Moderado
Sustancias preferentes y contaminantes específicos de cuenca	Cumple NCA	No cumple NCA

4. ELEMENTOS DE CALIDAD HIDROMORFOLOGICO (EC-HM)

Se realiza una toma de muestras anual, y del resultado obtenido se elige el peor valor.

- Alteración del hidroperiodo y del régimen de fluctuación del nivel del agua (ALT_HID_NIV)
- Alteración del régimen de estratificación (ALT_REG_EST)
- Alteración del estado y estructura de la cubeta (ALT_EST_CUB)
- Alteración del estado y estructura de la zona ribereña (ALT_EST_RIB)

5. CALCULO DEL ESTADO FINAL (EF)

Para el cálculo del <u>estado ecológico</u> (EE) se consideran el estado Biológico, el estado Fisicoquímico y el estado Hidromorfológico, de la siguiente manera:

EC-BIO (EE_BIO)	EC-FQ (EE_FQ)	EC-HM (EE_HM)	EEco (EE)
	MB (1-MB)	MB (1-MB)	MB (1-MB)
MuyBueno (1-MB)	BU (2-BU)		BU (2-BU)
wuybueno (1-wb)	MO (3-MO)	MB/BU	MO (3-MO)
	MB/BU		BU (2-BU)
Bueno (2-BU)	MO	MB/BU	
Moderado (3-MO)			MO (3-MO)
Deficiente (4-DE)	Indistinto	Indistinto	DE (4-DE)
Malo (5-MA)			MA (5-MA)

El <u>estado químico</u> (EQ) es "no bueno" cuando hay algún incumplimiento de la Norma de Calidad Ambiental, bien sea como media anual (NCA_MA), como máximo admisible (NCA_CMA) o en la biota (NCA_biota) para las **sustancias prioritarias y otros contaminantes** (tabla A8). Las NCA se recogen en el *Anexo IV del RD 817/2015*.

Tabla A8. Clases de estado químico para sustancias prioritarias y otros contaminantes.

Clase de estado químico	Bueno	No alcanza el buen estado
Sustancias prioritarias y otros contaminantes	Cumple NCA	No cumple NCA
Valoración de cada clase	2	3

Al comparar los resultados para cada métrica con los umbrales establecidos en el RD 817/2015, se ha tenido en cuenta que en el caso de que el resultado coincida exactamente con el LCC (límite de cambio de clase):

- Para EC-BIO y EC-FQ grales, se considerará en la clase inferior con NFC alto.
- Para EC-HMF, se considerará en la clase superior con NFC bajo.
- Para EC-FQ contaminantes específicos, se considerará que cumple la NCA pero con NFC bajo.

El <u>estado</u> (EF) de la masa de agua es el *peor valor* entre su estado ecológico y su estado químico según el diseño de la tabla A9.

Tabla A9. Determinación del estado final.

Estado Final (EF)	Estado Químico (EQ)		
Estado Ecológico (EE)	Bueno	No alcanza el buen estado	
Bueno o superior	Bueno		
Moderado		Inferior a bueno	
Deficiente	Inferior a bueno		
Malo			

DIAGNÓSTICO DEL ESTADO DE LA LAGUNA DE SARIÑENA (MAS 968).

AÑO 2007

Durante el año 2007 no se realizó muestreo.

DIAGNÓSTICO DEL ESTADO DE LA LAGUNA DE SARIÑENA (MAS 968).

AÑO 2008

Se han considerado los indicadores especificados en los apartados anteriores para los valores medidos en el lago, estableciéndose el estado ecológico global del lago según la metodología descrita con los límites de clase indicados para la tipología nº 20.

En la tabla A10 se incluye el estado ecológico indicado por cada uno de los parámetros, así como la catalogación de la masa de agua teniendo en cuenta los indicadores biológicos, fisicoquímicos e hidromorfológicos según la valoración de este estado ecológico final para cada campaña de muestreo.

Tabla A10. Diagnóstico del estado ecológico según los indicadores.

INDICADOR	VALOR	ESTADO ECOLOGICO
INDICADORES DE CALIDAD HIDROMOR	RFOLÓGICOS	Bueno
INDICADORES DE CALIDAD FISICOQUÍ	MICOS	
DISCO SECCHI (m)	Sin dato	NC*
pH	8,35	Bueno
CONCENTRACIÓN P TOTAL (mg/L)	0,186	Moderado
INDICADORES DE CALIDAD BIOLÓGICO	os	
CLOROFILA a (µg/L)	60,60	Malo
BIOVOLUMEN ALGAL (mm³/L)	14,03	NC*
FITOPLANCTON (EE_	MFIT)	Malo
COBERTURA DE ESPECIES INDICADORAS DE EUTROFIA (N°Especies)	Sin dato	
COBERTURA DE ESPECIES EXÓTICAS (NºEspecies)	Sin dato	
HIDRÓFITOS (Presencia/ Ausencia)	-	NC*
COBERTURA HELÓFITOS (%)	95	Muy Bueno
COBERTURA HIDROFITOS (%)	Sin dato	
RIQUEZA DE MACRÓFITOS (Nº especies)	2	NC*

OTRA FLORA ACUÁTICA (EE_OFALAM)		Muy Bueno
ÍNDICE IBCAEL	Sin dato	
INVERTEBRADOS (EE_IBCAEL)		

NC: No Considerado en esta tipología de lago para el cálculo del Estado Ecológico.

Atendiendo a estos valores, el Estado Ecológico sería el siguiente:

Tabla A11. Diagnóstico del estado ecológico.

INDICADOR	Código de estado	Nivel de estado
HIDROMORFOLÓGICO	EE_HM	Bueno
FISICOQUÍMICO	EE_FQ	Moderado
BIOLÓGICO	EE_BIO	Malo
ESTADO ECOLÓGICO	EE	Malo

No se han realizado otros muestreos químicos en este año.

A la vista de los resultados obtenidos, el Estado Final de la Laguna de Sariñena es INFERIOR A BUENO.

DIAGNÓSTICO DEL ESTADO DE LA LAGUNA DE SARIÑENA (MAS 968). AÑO 2009

Se han considerado los indicadores especificados en los apartados anteriores para los valores medidos en el lago, estableciéndose el estado ecológico global del lago según la metodología descrita con los límites de clase indicados para la tipología nº 20.

En la tabla A12 se incluye el estado ecológico indicado por cada uno de los parámetros, así como la catalogación de la masa de agua teniendo en cuenta los indicadores biológicos, fisicoquímicos e hidromorfológicos según la valoración de este estado ecológico final para cada campaña de muestreo.

Tabla A12. Diagnóstico del estado ecológico según los indicadores.

INDICADOR	VALOR	ESTADO ECOLOGICO
INDICADORES DE CALIDAD HIDROMOI	RFOLÓGICOS	Bueno
INDICADORES DE CALIDAD FISICOQUÍ	MICOS	
DISCO SECCHI (m)		NC*
рН	8,95	Bueno
CONCENTRACIÓN P TOTAL (mg/L)	0,149	Moderado
INDICADORES DE CALIDAD BIOLÓGIC	os	
CLOROFILA a (μg/L)	65,35	Malo
BIOVOLUMEN ALGAL (mm³/L)	7,38	NC*
FITOPLANCTON (EE_MFIT)		Malo
COBERTURA DE ESPECIES INDICADORAS DE EUTROFIA (N°Especies)	Sin dato	
COBERTURA DE ESPECIES EXÓTICAS (N°Especies)	Sin dato	
HIDRÓFITOS (Presencia/ Ausencia)	-	NC*
COBERTURA HELÓFITOS (%)	95	Muy Bueno
COBERTURA HIDROFITOS (%)	Sin dato	
RIQUEZA DE MACRÓFITOS (Nº especies)	2	NC*
OTRA FLORA ACUÁTICA (EE_OFALAM)		Muy Bueno
ÍNDICE IBCAEL	Sin dato	
INVERTEBRADOS (EE_	IBCAEL)	Bueno

NC: No Considerado en esta tipología de lago para el cálculo del Estado Ecológico.

Atendiendo a estos valores, el Estado Ecológico sería el siguiente:

Tabla A13. Diagnóstico del estado ecológico.

INDICADOR	Código de estado	Nivel de estado
HIDROMORFOLÓGICO	EE_HM	Bueno
FISICOQUÍMICO	EE_FQ	Moderado
BIOLÓGICO	EE_BIO	Malo
ESTADO ECOLÓGICO	EE	Malo

No se han realizado otros muestreos químicos en este año. A la vista de los resultados obtenidos, el Estado Final de la Laguna de Sariñena es **INFERIOR A BUENO.**

DIAGNÓSTICO DEL ESTADO DE LA LAGUNA DE SARIÑENA (MAS 968).

AÑO 2010

Se han considerado los indicadores especificados en los apartados anteriores para los valores medidos en el lago, estableciéndose el estado ecológico global del lago según la metodología descrita con los límites de clase indicados para la tipología nº 20.

En la tabla A14 se incluye el estado ecológico indicado por cada uno de los parámetros, así como la catalogación de la masa de agua teniendo en cuenta los indicadores biológicos, fisicoquímicos e hidromorfológicos según la valoración de este estado ecológico final para cada campaña de muestreo.

Tabla A14. Diagnóstico del estado ecológico según los indicadores.

INDICADOR	VALOR	ESTADO ECOLOGICO
INDICADORES DE CALIDAD HIDROMORFOLÓGICOS		Bueno
INDICADORES DE CALIDAD FISICOQUÍ	MICOS	
DISCO SECCHI (m)		NC*
рН	9,0	Bueno
CONCENTRACIÓN P TOTAL (mg/L)	0,222	Moderado
INDICADORES DE CALIDAD BIOLÓGICO	os	
CLOROFILA a (µg/L)	98,16	Malo
BIOVOLUMEN ALGAL (mm³/L)	100,65	NC*
FITOPLANCTON (EE_	MFIT)	Malo
COBERTURA DE ESPECIES INDICADORAS DE EUTROFIA (N°Especies)	Sin dato	
COBERTURA DE ESPECIES EXÓTICAS (NºEspecies)	Sin dato	
HIDRÓFITOS (Presencia/ Ausencia)	-	NC*
COBERTURA HELÓFITOS (%)	95	Muy Bueno
COBERTURA HIDROFITOS (%)	Sin dato	
RIQUEZA DE MACRÓFITOS (Nº especies)	2	NC*
OTRA FLORA ACUÁTICA (EE_OFALAM)		Muy Bueno
ÍNDICE IBCAEL	7,0	Bueno
INVERTEBRADOS (EE_	IBCAEL)	Bueno

NC: No Considerado en esta tipología de lago para el cálculo del Estado Ecológico.

Atendiendo a estos valores, el Estado Ecológico sería el siguiente:

Tabla A15. Diagnóstico del estado ecológico.

INDICADOR	Código de estado	Nivel de estado
HIDROMORFOLÓGICO	EE_HM	Bueno
FISICOQUÍMICO	EE_FQ	Moderado
BIOLÓGICO	EE_BIO	Malo
ESTADO ECOLÓGICO	EE	Malo

No se han realizado otros muestreos químicos en este año. A la vista de los resultados obtenidos, el Estado Final de la Laguna de Sariñena es **INFERIOR A BUENO.**