

Red de lagos

PUNTO DE MUESTREO

Código masa: L1042 Código muestreo: 1042 Fecha actualización de la ficha: 26/07/2011

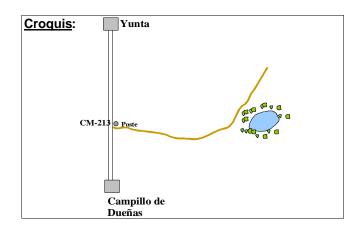
Tipología: Interior en cuenca sedimentación, mineralización baja, permanente **Red a la que pertenece: Parámetros biológicos analizados:**

Operativa Referencia X Fitoplancton X Fauna bentónica invertebrada X Vigilancia X Investigación Otra flora acuática X Peces

LOCALIZACIÓN

Localidad: Campillo de Dueñas Coordenadas: Huso: 30T

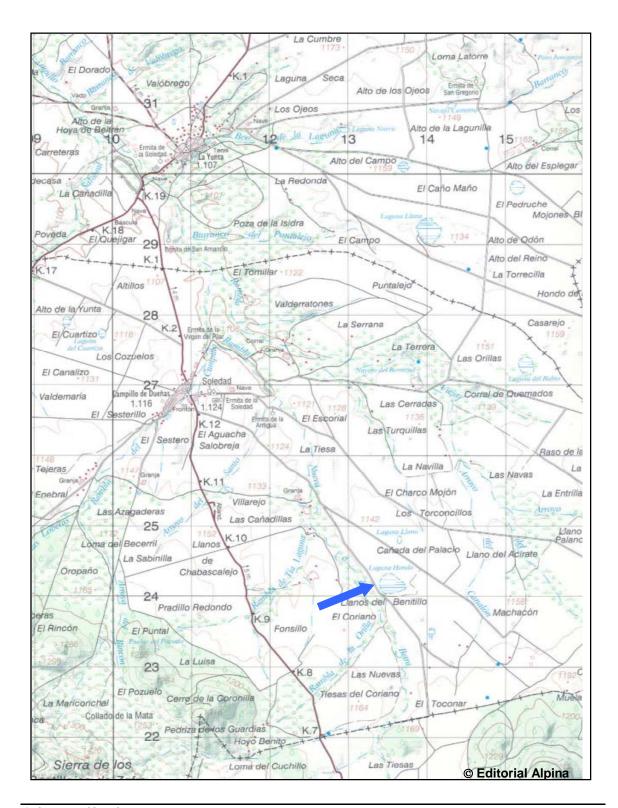
Municipio: Campillo de Dueñas X(m): 613751 Y(m): 4524182


Provincia: Guadalajara

CCAA: Castilla la Mancha Nº Mapa 1:50.000: 490

Altitud (m): 1.144

Ruta de acceso:


Desde la carretera N-211 tomar el desvío que conduce a Campillo de Dueñas, muy cerca de esta localidad, a mano derecha, sale una pista de tierra que conduce a la laguna (en la entrada de la pista hay una cruz de término). Seguir la pista durante unos 2 km aproximadamente, la laguna queda a mano derecha y se localiza fácilmente por la vegetación.

FOTOGRAFÍAS DEL LAGO

PLANO DE SITUACIÓN Escala 1:50.000

1- Laguna Honda

Red de lagos

Presiones e impactos				
Presiones hidromorfológicas	Presiones fisicoquímicas			
Represamientos Detracciones de agua Desecación Aportaciones de excedentes de riegos	Eutrofización Contaminación por vertidos directos Contaminación por aportes difusos			
Ahondamiento de la cubeta	Grado de intervención (CHE, 2005)			
Transformación de las riberas	Alto Medio X Bajo			
Comentario a	las presiones e impactos			
Comentario a	ias presiones e impactos			
Durante las visitas realizadas al lago entre 2007 y 201 fisicoquímicas. A pesar de ello se da una importante por la presencia de campos de cultivo.	10 no se observaron presiones hidromorfológicas ni presencia antrópica alrededor del lago, que se pone de manifiesto			
Instalacio	ones existentes y usos			
Construcciones, infraestructuras y usos humanos	Usos			
X Pista no asfaltada Calzada asfaltada Immuebles Motas o represas Telesilla	Agrícola 53% Ganadero 10% Silvícola % Urbano %			
FOTOGRAFÍAS DE LAS PRESIONES Y/O LAS INS	IALACIONES			

Campos de cereales alrededor de la laguna

Observatorio de aves instalada en la laguna

Red de lagos

Elementos biológicos

Estación analizada

Parámetros	Métricas	Valores	Valores	Valores	Valores
	InGA	0,74	0,72	1,58	0,22
Fitoplancton	Clo (mg Clo-a/m³)	10,00	8,33	3,09	8,19
	Biovolumen (mm³/L)	5,88	2,49	4,78	35,56
Otra flora acuática	Riqueza específica	6	7	10	17
Otra nora acuatica	Cobertura total de helófitos (%)	55	75	75	75
Fauna bentónica de invertebrados	QAELS	10,69	10,90	11,34	9,53

Comentarios

Elementos hidromorfológicos que afectan a los elementos biológicos

Régimen hidrológico

Mediante la realización de transectos de profundidades se ha calculado un volumen aproximado de la laguna de 0,1 hm3. En los muestreos realizados entre 2008 y 2010 no se apreció variación del nivel de agua del lago respecto al observado en 2007.

Presenta conexión con aguas subterráneas, en concreto con el sistema Páramos del alto Jalón.

Condiciones morfológicas del lago

Superficie de la laguna es aproximadamente de 29 ha. Su profundidad máxima es de 5,1 m. La cubeta presenta una pendiente dominante inferior al 25% al igual que la zona litoral. La zona litoral del estanque está ocupada por un anillo incompleto de helófitos (*Scirpus lacustris* y *Phragmites australis*).

Elementos químicos y fisicoquímicos que afectan a los elementos biológicos

Estación analizada

Código masa: L1042

		01/0	08/2007	26/08/2008		
Parámetros	Métricas	Valor	Estado según Ind. FQ	Valor	Estado según Ind. FQ	
	D.S. (m)	1,1	NC	2,5	NC	
Transparencia	Turbidez (clases) ¹	1 - 2	NC	2	NC	
	Color	Azul marronoso	NC	Verde marronoso	NC	
Condiciones térmicas	Temperatura (°C)	21,5	NC	22,1	NC	
Cond. de oxigenación	O ₂ dis (mg/L)	11,0	NC	7,0	NC	
Salinidad	Conductividad (µS/cm)	1519	Α	1307	Α	
	pH (Unid.)	8,6	NA	8,4	NA	
Estado de acidificación	Alcalinidad total (meq/L)	3,50	NA	3,24	NA	
	NH ₄ (mg/L)	0,15	NC	0,30	NC	
Condiciones relativas a	NO ₃ (mg/L)	<0.005	NC	<0.005	NC	
los nutrientes	NO ₂ (mg/L)	<0.005	NC	0,007	NC	
	P-PO ₄ (mg/L)	0,005	NC	<0.005	NC	
	P.tot (mg/L)	0,021	NA	0,021	NA	

		17/0	07/2009	11/08/2010		
Parámetros	Métricas	Valor	Estado según Ind. FQ	Valor	Estado según Ind. FQ	
	D.S. (m)	2,8	NC	2	NC	
Transparencia	Turbidez (clases) ¹	1	NC	3	NC	
	Color	Transp. azul	NC	Marronoso	NC	
Condiciones térmicas	Temperatura (°C)	22,9	NC	23,0	NC	
Cond. de oxigenación	O ₂ dis (mg/L)	7,2	NC	6,4	NC	
Salinidad	Conductividad (µS/cm)	1044	Α	731	Α	
	pH (Unid.)	8,5	NA	8,1	NA	
Estado de acidificación	Alcalinidad total (meq/L)	2,99	NA	3,30	NA	
	NH ₄ (mg/L)	0,15	NC	0,20	NC	
Condiciones relativas a	NO ₃ (mg/L)	<0.005	NC	0,150	NC	
los nutrientes	NO ₂ (mg/L)	<0.005	NC	0,011	NC	
	P-PO ₄ (mg/L)	<0.005	NC	0,013	NC	
	P.tot (mg/L)	0,015	NA	0,030	NA	

(1)**Turbidez** (Clases): 1= transparentes; 2= algo turbias; 3= turbias; 4= muy turbias

NA: No alterado, A: Alterado, NC: No computa

	¿La situación del lago permitia obtener datos significativos?					
2007:	X Si No	Comentarios:	2009:	X Si Comentarios:		
2008:	X Si No	Comentarios:	2010:	X Si Comentarios:		

Evaluación del ESTADO ECOLÓGICO DEL LAGO

	,	2007 2008		80	2009		2010		
	Índice	Valor índice	Nivel calidad	Valor índice	Nivel calidad	Valor índice	Nivel calidad	Valor índice	Nivel calidad
	Conc. Clorofila (mg Clo-a/m³)	10,00	Mod	8,33	В	3,09	MB	8,19	В
	Biovol. total fitopl. (mm3/L)	(c)	-	(c)	-	(c)	-	0,22	-
Fitoplancton	InGa	(c)	-	(c)	-	(c)	-	0,22	-
	Nivel de calidad FITOPLANCTON	Mod		В		M	В	В	
	Riqueza especif. macrofitos	6	MB	7	MB	10	MB	17	MB
Otra Flora	% cinturón helófitos	55%	В	75%	MB	75%	MB	75%	MB
Acuática	Nivel de calidad OTRA FLORA ACUÁTICA	МВ		МВ		MB		MB	
	QAELS _{Ebro}	10,69	MB	10,90	MB	11,34	MB	9,53	MB
Invertebrados	Nivel de calidad FAUNA BENTÓNICA INV.	MB		MB		MB		МВ	
Estado ecol calidad biol	lógico según elementos de ógicos	ı	Mod	E	3	М	В	E	3
Cond. fisico-químicas del lago		Mod	Inferior	Mod o	Inferior	Mod o Inferior		Mod o Inferior	
Cond. hidromorfológicas del lago			МВ	М	В	М	В	М	В
		[Def	E	3	E	3	E	3

- (a) No muestreado ese año
- (b) Lago seco
- (c) Métrica no considerada

Fitoplancton

Fecha muestreo 01/08/2007

COMPOSICIÓN	ABUNDANCIA	BIOVOLUMEN	CUALITATIVO
COMPOSICION	células/mL	mm ³ /L	CUALITATIVO
СҮАПОРНҮТА			
Microcystis aeruginosa			2
Microcystis cf. flos-aquae	1607	0,0458	
Phormidium sp.	6429	1,6157	
BACILLARIOPHYCEAE			
Diatomeas no coloniales			
Cyclotella sp. 2	11	0,0350	
CHRYSOPHYCEAE (sensu lato)			
Crisofíceas no coloniales			
Pseudopedinella sp.	11	0,0042	
EUGLENOPHYTA			
Euglena acus	11	0,0193	
Trachelomonas volvocina	32	0,0502	
DINOPHYTA			
Ceratium hirundinella	52	2,3963	5
СКҮРТОРНҮТА			
Cryptomonas erosa	279	0,6410	
Cryptomonas marssonii	129	0,0913	
Plagioselmis nannoplanctica	343	0,0335	
CHLOROPHYTA			
Staurastrum sp.			+
Clorococales no coloniales			
Monoraphidium circinale	11	0,0001	
Chlorolobion saxatile	11	0,0005	
Clorococales coloniales			
Botryococcus braunii	514	0,0297	3
Eutetramorus fottii	3471	0,7652	1
Oocystis naegelii	54	0,1199	
Oocystis sp.	86	0,0315	
Scenedesmus quadricauda	43	0,0048	

TOTAL	13092 células/mL	5,8
Porcentaje de cianobacterias	28,58%	
Concentración clorofila (mg Clo-a/m³)	10,00	
InGA	0.74	

5,88	mm³/L

Clases de abundancia	% de presencia	
+	presencia	
1	<1%	
2	1-10%	
3	11-30%	
4	31-60%	
5	>60%	

Fitoplancton

Fecha muestreo 26/08/2008

COMPOSICIÓN	ABUNDANCIA	BIOVOLUMEN	CHALITATIVO
COMPOSICION	células/ml	mm ³ /L	CUALITATIVO
СҮАПОРНҮТА			
Anabaena cf. sigmoidea	4040	0,2877	3
Aphanizomenon sp. (fil/mL)	5	0,0044	
Microcystis cf. flos-aquae	15026	0,3969	5
Oscillatoria sp.	5	0,0238	
Pseudanabaena sp.	197	0,0034	
Woronichinia sp.	177	0,0052	
BACILLARIOPHYCEAE			
Diatomeas no coloniales			
Cyclotella cf. bodanica	15	0,0102	
Fragilaria ulna	5	0,0138	
Nitzschia cf. palea	5	0,0020	+
Pinnularia sp.	5	0,0127	1
CHRYSOPHYCEAE (sensu lato)			
Crisofíceas no coloniales			
Salpingoeca sp.	5	0,0005	
EUGLENOPHYTA			
Phacus pusillus	10	0,0036	
Trachelomonas volvocina	5	0,0074	
DINOPHYTA			
Ceratium hirundinella	15	0,7062	3
Gymnodinium sp. (pequeño)	5	0,0008	
СКҮРТОРНҮТА			
Cryptomonas erosa	335	0,7000	
Cryptomonas erosa var. reflexa	89	0,1860	
Cryptomonas marssonii	25	0,0167	
Katablepharis ovalis	54	0,0037	
Plagioselmis nannoplanctica	1030	0,0902	
CHLOROPHYTA			
Elakatothrix gelatinosa	59	0,0036	
Mougeotia sp.			4
Spirogyra sp.			1
Staurastrum sp.			3
Clorococales no coloniales			
Monoraphidium arcuatum	15	0,0004	
Clorococales coloniales			
Chlorella sp.	256	0,0111	
Pediastrum boryanum			1
Scenedesmus semipulcher	99	0,0016	
Scenedesmus spinosus	20	0,0005	

TOTAL	21502 células/mL
Porcentaje de cianobacterias	28,95%
Concentración clorofila (mg Clo-a/m³)	8,33
InGA	0.72

Clases de abundancia	% de presencia
+	presencia
1	<1%
2	1-10%
3	11-30%
4	31-60%
5	>60%

 $2,49 \text{ mm}^3/L$

Fitoplancton

Fecha muestreo 17/07/2009

COMPOSICIÓN	ABUNDANCIA	BIOVOLUMEN	CUALITATIVO
COMPOSICION	células/mL	mm ³ /L	CUALITATIVO
СҮАПОРНҮТА			
Aphanocapsa delicatissima (col/mL)	59	0,0475	
Aphanocapsa incerta (col/mL)	12	0,0982	1
Microcystis aeruginosa			3
Trychonema cf. bornetii (fil/mL)	12	0,3148	
BACILLARIOPHYCEAE			
Diatomeas no coloniales			
Cymbella sp.			+
Gyrosigma sp.			+
Nitzschia sp.	3	0,0048	
Diatomeas coloniales			
Diatoma sp.	28	0,0390	
Fragilaria capucina			+
CHRYSOPHYCEAE (sensu lato)			
Crisofíceas no coloniales			
Pseudopedinella sp.	3	0,0006	
EUGLENOIDEA			
Trachelomonas volvocinopsis	12	0,0320	
DINOPHYTA			
Ceratium hirundinella	68	3,2016	2
Peridinium cinctum	6	0,2411	5
СКҮРТОРНҮТА			
Katablepharis ovalis	3	0,0002	
Cryptomonas erosa	180	0,3719	
Cryptomonas marssonii	115	0,0763	
Rhodomonas minuta	205	0,0179	
CHLOROPHYTA			
Closterium sp.			1
Cosmarium sp.			1
Mougeotia sp.			1
Staurastrum pingue			2
Clorococales coloniales			
Botryococcus braunii (col/mL)	12	0,3302	2
Oocystis solitaria	3	0,0037	
Pediastrum boryanum			1
Sphaerocystis schroeteri			+

TOTAL	721 células/mL	
Porcentaje de cianobacterias	6,59%	
Concentración clorofila (mg Clo-a/m³)	3,09	
InGA	1,58	

Clases de abundancia	% de presencia
+	presencia
1	<1%
2	1-10%
3	11-30%
4	31-60%
5	>60%

4,78 mm³/L

Fitoplancton

Fecha muestreo 11/08/2010

COMPOSICIÓN	ABUNDANCIA	BIOVOLUMEN	CUALITATIVO
COMPOSICION	células/mL	mm ³ /L	COALITATIVO
CYANOPHYTA			
Aphanocapsa delicatissima (col/mL)	601	2,5175	3
Coelosphaerium kuetzingianum(col/mL)	19	0,0796	
Chroococcus minutus	113	0,0098	3
Microcystis aeruginosa (col/mL)	56	29,3215	4
Oscillatoria sp. (fil/mL)	19	0,2238	+
BACILLARIOPHYCEAE			
Diatomeas no coloniales			
Anomoeoneis sp.			1
Cyclotella sp.	94	0,0517	
Nitzschia acicularis	19	0,0118	+
Stephanodiscus hantzschii	38	0,0599	1
CHRYSOPHYCEAE (sensu lato)			
Crisofíceas no coloniales			
Ochromonas sp.	357	0,0234	
Pseudopedinella gallica	94	0,0257	
Spiniferomonas bourrellyi	19	0,0030	
НАРТОРНҮТА			
Chrysochromulina parva	113	0,0032	
EUGLENOPHYTA			
Euglena oxyuris	7	0,2985	3
Euglena sp.	19	0,0199	
Phacus sp.			+
Phacus tortus	<1	<0,0001	+
Trachelomonas volvocinopsis	19	0,0219	
DINOPHYTA			
Ceratium hirundinella	28	1,0692	3
Gymnodinium cnecoides	38	0,0170	
Peridinium cinctum			1
СКҮРТОРНҮТА			
Cryptomonas erosa	38	0,0154	1
Cryptomonas phaseolus	75	0,0369	
Chroomonas coerulea	56	0,0091	
Katablepharis ovalis	38	0,0032	
Rhodomonas minuta	225	0,0227	
CHLOROPHYTA			
Cosmarium abbreviatum	469	0,7360	1
Chlamydocapsa planctonica			1
Chlamydomonas sp.	19	0,0012	
Staurastrum cf. gracile			1
Staurastrum pingue			2
Tetraselmis cordiformis	225	0,3839	3
Clorococales coloniales			
Botryococcus braunii			2
Coelastrum microporum	300	0,0577	1
Coenocystis subcylindrica	225	0,0206	1
Dictyosphaerium pulchellum	1277	0,1380	4
Kirchneriella obesa			+
Nephrocytium cf. limneticum	75	0,0231	1

Oocystis marssonii	19	0,0086	
Pediastrum tetras	75	0,0199	
Scenedesmus microspina			+
Scenedesmus obtusus	3267	0,2730	5
Sphaerocystis schroeteri	300	0,0515	1
Tetrastrum triangulare	75	0,0014	

35,56 mm³/L

TOTAL	8411 células/mL
Porcentaje de cianobacterias	83,09%
Concentración clorofila (mg Clo-a/m³)	8,19
InGA	0,22

Clases de abundancia	% de presencia
+	presencia
1	<1%
2	1-10%
3	11-30%
4	31-60%
5	>60%

Vegetación acuática

Fecha muestreo	01/08/2007	26/08/2008	17/07/2009	11/08/2010
		Г		
COMPOSICIÓN				
CLOROPHYTA				
Characeae				
Chara aspera	+	+		+
Chara cf connivens			+	
MAGNOLIOPHYTA				
MAGNOLIOPSIDA				
Ranunculaceae				
Ranunculus peltatus				+
Ranunculus sp	+	+	+	
Polygonaceae				
Polygonum amphibium	+	+	+	+
Haloragaceae				
Myriophyllum cf alterniflorum			+	
Myriophyllum cf spicatum			+	
Myriophyllum spicatum	+	+		+
LILIOPSIDA				
Potamogetonaceae				
Potamogeton cf. gramineus				+
Potamogeton pectinatus		+	+	+
Juncaceae				
Juncus articulatus				+
Juncus sp.				+
Cyperaceae				
Bolboschoenus maritimus				+
Carex sp.				+
Eleocharis palustris				+
Eleocharis sp.			+	+
Scirpoides holoschoenus				+
Scirpus lacustris	+	+	+	+
Schoenoplectus lacustris				+
Poaceae				
Phragmites australis	+	+	+	+
Typhaceae				
Typha sp.			+	+

Riqueza específica (nº de taxones de macrófitos)	6	7	10	17
% cinturón de helófitos	55%	75%	75%	75%

Fauna bentónica de invertebrados

Macroinvertebrados

Fecha muestreo	01/08/2007	26/08/2008	17/07/2009	11/08/2010
	Abundancia	Abundancia	Abundancia	Abundancia
COMPOSICIÓN	relativa (%)	relativa (%)	relativa (%)	relativa (%)
Ph. NEMATODA		0,48		
Cl. Pulmonata				
O. Basommatophora				
F. Ancylidae				
Ancylus sp.		0,96		
F. Planorbidae		0,48		
Ph. MOLUSCA				
CI. Pulmonata				
O. Basommatophora				
F. Planorbidae			0,13	
F. Lymnaeidae			0,25	0,14
Ph. ANELIDA				
CI. Hirudíneos				
O. Arthyncobdellidae				
F. Glossiphonidae			0,13	
Cl. Oligochaeta		13,46	7,79	1,98
O. Tubificida				
F. Lumbricidae			+	
F. Naididae	11,86		+	
Ph. ARTHROPODA				
Cl. Aracnida		0,48		
F. Acari				
Hydracarina sp.	21,04	2,88	6,78	3,82
Supercl. INSECTA				
CI. Euentomata				
O. Odonata				
F. Coenagrionidae	2,30		1,01	1,77
Ischnura sp.		1,92		
F. Aeshnidae			0,25	0,55
F. Cordulidae	0,38			
O. Ephemeroptera				
F. Caenidae	5,36			
Caenis sp.		2,40	5,28	18,01
F. Baetidae	40,17		45,23	50,20
Cloëon sp.		42,31	·	•
O. Hemiptera				
F. Gerridae				
Gerris sp.	0,38	4,33		0,27
F. Mesovellidae	,	, , , , , , , , , , , , , , , , , , ,		0,14
F. Corixidae				0,55
Micronecta sp.	1,91	2,40	10,05	16,92
F. Notonectidae	·		· · · · · · · · · · · · · · · · · · ·	
Notonecta sp.	0,05			
F. Naucoridae	0,10			
Naucoris sp.		0,48	2,76	4,09
F. Veliidae		,	,	•

0,48

Microvelia sp.

O. Coleoptera

F. Gyrinidae			0,25	
F. Hygrobiidae				
Hygrobia sp.				0,07
F. Dytiscidae				
Coelambus sp.				0,07
O. Diptera				
F. Limoniidae				0,14
F. Culicidae			0,13	
Anopheles sp.				0,75
F. Chironomidae	12,63	26,44	18,59	0,55
O. Tricoptera				
F. Hydroptilidae	3,83		1,26	
Hydroptila sp.		0,48		
F. Ecnomidae				
Ecnomus sp.	·		0,13	
Total (%)	100	100	100	100

Nº IND./MUESTRA	2.091	208	796	1.466
Nº TAXONES	12	15	17	15
RIC	15	18	17	17

Fauna bentónica de invertebrados

Microinvertebrados

Fecha muestreo	01/08/2007	26/08/2008	17/07/2009	11/08/2010
COMPOSICIÓN	Abundancia relativa (%)	Abundancia relativa (%)	Abundancia relativa (%)	Abundancia relativa (%)
Ph. ARTHROPODA				
SubPh. Crustacea				
Cl. Branchiopoda				
Daphnia longispina	0,3	0,72		
Ceriodaphnia dubia	1,2	9,33	50,79	48,62
Ceriodaphnia pulchella		3,35		
Pleuroxus aduncus			6,35	
Chydorus sphaericus		0,24	15,08	
Alona rectangula	0,1	0,24		
Cl. Copepoda				
Neolovenula alluaudi	3,2	10,77	6,35	11,01
Tropocyclops prasinus	1,0	58,13	21,43	34,86
Cl. Ostracoda		7,66		
Sp1				5,50
Ph. ROTIFERA				
CI. Rotatoria				
Keratella quadrata	37,2			
Asplanchna priodonta	57,0			
Euchlanys dilatata		3,83		
Synchaeta pectinata		5,74		
Total (%)	100	100	100	100
Índice ACCO	7,88	7,53	8,03	6,21

Red de lagos

PUNTO DE MUESTREO

Vista del lago en 2007

Vista del lago en 2009

VEGETACIÓN

Phragmites australis

Typha sp

Polygonum amphibium

Chara cf connivens

Eleocharis sp.

ADICIONAL INFORME LAGUNA HONDA 2007-2010

Durante el año 2022 se han revisado los datos de la Laguna Honda recopilados durante los años 2017 a 2010, en aplicación del Real Decreto 817/2015, de 11 de septiembre, por el que se establecen los criterios de seguimiento y evaluación del estado de las aguas superficiales y las normas de calidad ambiental, a partir de la trasposición de la Directiva Marco del Agua (DMA).

La metodología utilizada ha consistido en obtener del informe de dicho año los datos necesarios para estimar de nuevo el estado trófico y el estado ecológico y, recalcular el valor correspondiente en cada variable y en el estado final del lago, utilizando las métricas publicadas en 2015, lo que permite comparar el estado de los lagos en un ciclo interanual de forma homogénea.

En cada apartado considerado se indica la referencia del apartado del informe original al que se refiere este trabajo adicional.

1. EVALUACIÓN DEL ESTADO

El **estado** de una masa de agua es el grado de alteración que presenta respecto a sus condiciones naturales, y viene determinado por el *peor valor* de su estado ecológico y químico.

- El <u>estado ecológico</u> es una expresión de la calidad de la estructura y el funcionamiento de los ecosistemas acuáticos asociados a las aguas superficiales en relación con las condiciones de referencia (es decir, en ausencia de alteraciones). Se determina a partir de indicadores de calidad (biológicos y fisicoquímicos).
- El <u>estado químico</u> de las aguas es una expresión de la calidad de las aguas superficiales que refleja el grado de cumplimiento de las normas de calidad ambiental de las sustancias prioritarias y otros contaminantes.

El estado de las masas de agua superficial quedará determinado por el peor valor de su estado ecológico y estado químico.

El estado ecológico de las aguas superficiales se clasificará como muy bueno, bueno, moderado, deficiente o malo. Para clasificar el estado ecológico de las masas de agua

superficial se aplicarán los indicadores de los elementos de calidad, los valores del anexo II del Real Decreto 817/2015 y las NCA calculadas para los contaminantes específicos o en su caso, las NCA del anexo V para las sustancias preferentes.

El estado químico de las aguas superficiales se clasificará como bueno o no alcanza el buen estado. Para clasificar el estado químico se aplicarán las NCA de las sustancias incluidas en el Anexo IV del Real Decreto 817/2015 (sustancias prioritarias y otros contaminantes).

La clasificación del estado de las masas llevará asociado un nivel de confianza que se calculará conforme a los criterios especificados en el Anexo III B del citado Real Decreto.

La clasificación del estado ecológico se realizará con los resultados obtenidos para los indicadores correspondientes a los elementos de calidad biológicos, químicos y fisicoquímicos, e hidromorfológicos y vendrá determinado por el elemento de calidad cuyo resultado final sea el más desfavorable.

La clasificación del estado químico de una masa de agua se evalúa mediante el análisis de conformidad de la concentración de las sustancias prioritarias y otros contaminantes con las NCA recogidas en el Anexo IV. Corresponde a la clasificación peor de cada una de las sustancias del anexo IV.

2. ELEMENTOS DE CALIDAD BIOLÓGICOS (EC-BIO)

2.1 Composición, abundancia y biomasa de Fitoplancton (EC-BIO)

Datos obtenidos de una muestra integrada (MFIT) (dos veces al año): en marzo-mayo (lagos temporales); en mayo-agosto (lagos permanentes someros) y en julio-sept (lagos permanentes profundos).

Se aplica el protocolo MFIT-2013 Versión 2, utilizando dos métricas:

- Concentración de clorofila a (CONCLOA_ZF). Fórmula tricromática de Jeffrey y Humphrey (1975). Media de los valores de las métricas durante los dos análisis.
- Biovolumen total de fitoplancton (BVOL_T_FTP). Sumatorio de biovolúmenes de los taxones de fitoplancton para cada análisis y el dato final será la media de los valores de biovolumen total obtenidos en los análisis de los dos muestreos anuales.

Para la evaluación del estado ecológico de las masas de agua de la categoría lago mediante el elemento de calidad fitoplancton, se deberá seguir el procedimiento descrito a continuación.

Las métricas de fitoplancton aplicables a lagos son únicamente aquellas que tienen en cuenta aspectos de abundancia y biomasa, es decir, la concentración de clorofila a y el biovolumen total de fitoplancton. Son dependientes del tipo de lago, y se consideran según la tabla A1.

Tabla A1. Métricas aplicables a los tipos de lagos para la evaluación del estado ecológico.

Tipos	Clorofila a	Biovolumen fitoplancton
1	Si	Si
2	Si	Si
3	Si	Si
4	Si	Si
5	Si	No aplicable
10	Si	Si
11	Si	Si
15	Si	Si
16	Si	No aplicable
18	Si	No aplicable
20	Si	No aplicable
21	Si	No aplicable
22	Si	No aplicable
23	Si	No aplicable
24	Si	No aplicable
26	Si	No aplicable

El fitoplancton es un indicador de respuesta trófica y, por lo tanto, integra todas las variables causales, de modo que está influido por otros condicionantes ambientales además de estarlo por los niveles de nutrientes. Se utilizan dos parámetros como estimadores de la biomasa algal en los índices: concentración de clorofila a en la zona fótica (µg/L) y biovolumen total de fitoplancton (mm³/L).

Al contar en este estudio mayoritariamente con sólo una campaña de muestreo, y por tanto no contar con una serie temporal que nos permitiera la detección del máximo anual, se utilizan las clases de calidad relativas a la media anual (tabla A2). La utilización de los límites de calidad relativos a la media anual de clorofila se basó en el hecho de que los muestreos fueron realizados durante la estación de verano. Según la bibliografía limnológica general, el verano coincidiría con un descenso de la producción primaria motivado por el agotamiento de nutrientes tras el pico de producción típico de finales de primavera. Por ello, la utilización de los límites o rangos relativos al máximo anual resultaría inadecuada.

Concentración de clorofila a

Del conjunto de pigmentos fotosintetizadores de las microalgas de agua dulce, la clorofila *a* se emplea como un indicador básico de biomasa fitoplanctónica. Todos los grupos de microalgas contienen clorofila *a* como pigmento principal, pudiendo llegar a representar entre el 1 y el 2 % del peso seco total. La clasificación del estado ecológico de acuerdo con la concentración de clorofila *a* se indica en la tabla A2.

Tabla A2. Límites de cambio de clase del estado ecológico y condición de referencia según tipo de lago y el RCE calculado de la concentración de clorofila *a*.

Límite de cambio de clase estado ecológico	Condición de referencia (mg/m³)	Muy Bueno / Bueno	Bueno / Moderado	Moderado / Deficiente	Deficiente / Malo
Tipo 1	1,0	0,67	0,45	0,30	0,15
Tipo 2	0,9	0,64	0,42	0,29	0,15
Tipo 3	1,3	0,68	0,49	0,34	0,17
Tipo 4	1,5	0,65	0,43	0,26	0,13
Tipo 5	1,8	0,62	0,37	0,24	0,13
Tipo 10	2,5	0,71	0,46	0,32	0,18
Tipo 11	1,6	0,67	0,40	0,28	0,13
Tipo 15	2,7	0,71	0,46	0,32	0,19
Tipo 16	3,8	0,68	0,42	0,23	0,15
Tipo 18	3,5	0,66	0,42	0,25	0,15
Tipo 20	3,5	0,61	0,37	0,25	0,13
Tipo 21	3,2	0,59	0,32	0,21	0,10
Tipo 22	3,0	0,58	0,38	0,26	0,13
Tipo 23	4,7	0,62	0,43	0,25	0,12
Tipo 24	4,9	0,63	0,46	0,26	0,12
Tipo 26	5,5	0,66	0,47	0,27	0,14

Biovolumen algal

El biovolumen es una medida mucho más precisa de la biomasa algal, por tener en cuenta el tamaño o volumen celular de cada especie, además del número de células. La clasificación del estado ecológico de acuerdo al biovolumen de fitoplancton se indica en la tabla A3.

Tabla A3. Límites de cambio de clase del estado ecológico y condición de referencia según tipo de lago y el RCE del biovolumen algal del fitoplancton.

Límite de cambio de clase estado ecológico	Condición de referencia (mm³/L)	Muy Bueno / Bueno	Bueno / Moderado	Moderado / Deficiente	Deficiente / Malo
Tipo 1	0,7	0,64	0,38	0,24	0,12
Tipo 2	0,6	0,67	0,44	0,31	0,15
Tipo 3	1,4	0,67	0,55	0,37	0,18
Tipo 4	1	0,71	0,49	0,34	0,17
Tipo 10	0,7	0,58	0,34	0,26	0,13
Tipo 11	0,2	0,67	0,34	0,19	0,10
Tipo 15	1,5	0,65	0,48	0,32	0,19

Cálculo de Ratio de Calidad Ecológico (RCE)

Se debe seguir el procedimiento descrito en el Protocolo MFIT-2013 Versión 2 para el cálculo del RCE de cada uno de los cuatro parámetros:

Cálculo para clorofila a:

RCE= [(1/Chla Observado) / (1/Chla Condición de referencia)]

Cálculo para biovolumen:

RCE= [(1/biovolumen Observado) / (1/ biovolumen Condición de referencia]

Se utilizarán los valores de las Condiciones de Referencia (CR) de las métricas, para cada tipo de masa de agua, recogidos en la legislación.

Transformación de RCE a escalas numéricas equivalentes

Los valores de RCE obtenidos se deben transformar a escalas numéricas equivalentes para normalizarlos a una escala lineal común.

Los Ratios de Calidad Ecológica transformados se obtendrán mediante la aplicación de la siguiente fórmula, que no es más que una interpolación lineal entre los límites de

cambio de clase de los Ratios de Calidad Ecológica que se han establecido para cada indicador, y los que se corresponden con una escala lineal.

RCE_trans = Val.trans_i + (RCE-Val_i) x (Val.tran_s – Val.trans_i) / (Val_s – Val_i)

Donde:

- RCE trans = Ratio de Calidad Ecológica transformado
- RCE = Ratio de Calidad Ecológica sin transformar
- Val.transi = Valor de RCE de cambio de clase estado ecológico inferior transformado
- Vali = Valor de RCE de cambio de clase de estado ecológico inferior sin transformar
- Val.trans_s = Valor de RCE de cambio de clase de estado ecológico superior transformado
- Vals = Valor de RCE de cambio de clase de estado ecológico superior sin transformar

Se utilizarán para cada tipo de masa de agua los valores del RCE de las métricas recogidos en la legislación, con los que se comparará el RCE sin transformar de la muestra (Val_i). Los valores de RCE de cambio de clase de estado ecológico superior sin transformar (Val_s) –que constituyen el límite superior de una clase de estado ecológico-se calcularán como el valor inmediatamente inferior con 2 decimales de los valores del RCE de cambio de clase de estado ecológico inferior sin transformar, recogidos en la legislación.

Para el cálculo, se utilizarán los Val.trans_s y Val.trans_i que figuran en la tabla siguiente:

Clase de estado	Valores de RCE de cambio de clase de estado ecológico superior transformado (Val.trans _s)	Valores de RCE de cambio de clase de estado ecológico inferior transformado (Val.trans _i)
Muy bueno	1,00	0,80
Bueno	0,79	0,60
Moderado	0,59	0,40
Deficiente	0,39	0,20
Malo	0,19	0,00

Combinación de RCE trasformados para la clasificación del estado ecológico

La combinación de los RCE transformados de los indicadores para la clasificación del estado ecológico del elemento de calidad composición, abundancia y biomasa de fitoplancton se realizará utilizando la siguiente fórmula:

RCE trans final (MFIT) = 0,75 RCE trans (CONCLOa) + 0,25 RCE trans (BVOLTOT)

El valor final de la combinación de los RCE transformados (RCE trans final) se utilizará para la clasificación del estado ecológico, de acuerdo a la escala de clases de estado ecológico indicada en el apartado anterior.

2.2. Composición y abundancia de Otra Flora Acuática (macrófitos) (EC-BIO)

El cálculo se realiza a partir de una muestra anual realizada en un momento favorable para la vegetación.

Se sigue el protocolo OFALAM-2013. Se elige el peor valor del índice que posee varias métricas (OFALAM). No se aplica en lagos de los tipos 1 a 4 situados a más de 2300m de altitud.

- Presiones de tipo HM: Se hace la media. (OFALAM_P_HM)
 - Presencia/Ausencia de hidrófitos (PRESENCIA_HID): tipos 1-8, y entre éstos, sólo en aquéllos que de manera natural puedan tenerlos. Se excluyen lagos situados a altitud mayor a 2300m, que discrimina a algunos de los lagos de los tipos de alta montaña (tipos 1-4).
 - Riqueza de especies de macrófitos típicos (RIQ_SPS_MAF): tipos 10-12, 14-19 y 24-29.
 - Cobertura total de hidrófitos típicos (COBER_T_HID): tipos 10-12, 14-16, 18 y 20-29.
 - Cobertura total de helófitos típicos (COBER_T_HEL): tipos 10-12, 14-16, 18 y 20-29.
 - Cobertura total de macrófitos típicos (hidrófitos+helófitos)
 (COBER_T_MAF_L): se aplica sólo a los tipos de lagos con hidroperiodo temporal (tipos 17 y 19). No hay en la CHE de esas tipologías.
- Presión por eutrofización: Se coge el valor de cobertura de especies de macrófitos indicadoras de condiciones eutróficas (COBER_SPS_EUT): todos los tipos de lagos naturales excepto en los tipos 9, 13 y 30 (que no se encuentran en la Demarcación del Ebro).
- Presión por introducción de especies exóticas: Se coge el valor de cobertura de especies exóticas de macrófitos (COBER_SPS_EXO): todos los tipos de lagos naturales excepto en los tipos 9, 13 y 30 (que no se dan en la CHE).

2.3. Composición y abundancia de Fauna bentónica de Invertebrados (EC-BIO).

Se toma una muestra anual. Se sigue el protocolo ML-L-I-2013 e IBCAEL 2013. Se coge el valor del índice (IBCAEL). La fórmula de cálculo es la siguiente:

El índice ABCO (ABUN_BCO) se obtiene a partir de una muestra de microinvertebrados bentónicos.

El índice RIC (RIC) se obtiene a partir de una muestra de macroinvertebrados bentónicos.

3. ELEMENTOS DE CALIDAD FISICOQUÍMICOS (EC-FQ)

Se debe tomar cuatro muestras anuales de la zona fótica, calculándose hasta 2019 como la media de los valores anuales. A partir de 2020 se calcula con la mediana de los valores anuales como establece la Guía de Estado. Si solo se ha realizado un muestreo, se tomará ese único valor.

Se elige el peor valor entre los siguientes indicadores de calidad (MIN_FQ) según los rangos señalados en RD 817/2015:

ELEMENTOS DE CALIDAD FQ (EC-FQ)	INDICADORES DE CALIDAD FQ (IC-FQ)
Transparencia	Disco de Secchi (tipos 1-7, 9-12 y 14-15) (SECCHI)
Estado de acidificación	pH (PH_ZF) (todos los tipos)
Condiciones relativas a nutrientes	P total (P_TOT) (tipos 1-12,14-24 y 26-30)

3.1. Transparencia

La transparencia es un elemento válido para evaluar el estado ecológico del lago; tiene alta relación con la productividad biológica; y además tiene rangos establecidos fiables y de utilidad para el establecimiento de los límites de clase del estado ecológico. Se ha evaluado a través de la profundidad de visión del disco de Secchi (DS), considerando su valor para la obtención de las distintas clases (tabla A4).

Tabla A4. Límites de cambio de clase de estado ecológico según la profundidad de visión del Disco de Secchi estimada en metros.

Clase de estado ecológico	Muy Bueno/Bueno	Bueno/Moderado
Tipo 1	6,0	4,5
Tipo 2	6,0	4,0
Tipo 3	4,5	3,0
Tipo 4, 10, 15	4,0	3,0
Tipo 5, 11, 16, 18, 20, 21, 22, 23, 24, 26	No considerado	

3.2. pH

El pH es un elemento válido para evaluar el estado ecológico del lago; tiene alta relación con la productividad biológica; y además tiene rangos establecidos fiables y de utilidad para el establecimiento de los límites de cambio de clase de estado ecológico. Se ha utilizado la medida de pH, considerando su valor para la obtención de las distintas clases (tabla A5).

Tabla A5. Límites de cambio de clase de estado ecológico según el valor de pH.

Clase de estado ecológico	Bueno/Moderado	Moderado/Deficiente
Tipo 1, 3	6,0 - 9,0	≤ 6 o ≥ 9
Tipo 2, 4, 15, 18, 24, 26	7,0 – 9,5	≤7 o ≥ 9,5
Tipo 5	6,0 - 9,5	≤ 6 o ≥ 9,5
Tipo 10, 11	7,0 - 9,7	≤7 o≥9,7
Tipo 16	6,5 - 9,5	≤ 6,5 o ≥ 9,5
Tipo 20, 21, 22, 23	7,5 - 10,5	≤ 7,5 o ≥ 10,5

3.3. Concentración de nutrientes

En este caso se ha seleccionado el fósforo total (P_TOT), ya que su presencia a determinadas concentraciones en un lago o masa de agua supone procesos de eutrofización, pues en la mayoría de los casos es el principal elemento limitante para el crecimiento de las algas.

Se ha empleado el resultado obtenido en la muestra integrada, considerando los criterios de la OCDE especificados en la tabla A6 (OCDE, 1982) adaptado a los intervalos de calidad del RD 817/2015.

Tabla A6. Límites de cambio de clase de estado ecológico según la concentración de fósforo total estimado en μg/L.

Clase de estado ecológico	Muy Bueno/Bueno	Bueno/Moderado
Tipo 1, 2	8,0	12,0
Tipo 3, 4	12,0	18,0
Tipo 5	18,0	26,0
Tipo 10	16,0	28,0
Tipo 11	12,0	22,0
Tipo 15	16,0	28,0
Tipo 16*	20,0	45,0
Tipo 18*	22,0	50,0
Tipo 20, 21, 22, 23*	40,0	100,0
Tipo 24, 26*	30,0	80,0

^{*} En lagunas someras de los tipos 16 al 30, en caso que la abundancia de la avifauna justifique los valores elevados de P_TOT, esta variable no se considerará en el cálculo.

Si se toman varios datos anuales, se hace la *mediana* de los valores anuales.

3.4. Sustancias preferentes y contaminantes específicos de cuenca

Dentro de los indicadores fisicoquímicos también se tienen en cuenta las sustancias preferentes y contaminantes específicos de cuenca. El valor medio de los datos anuales se revisa para ver si *cumple o no con la Norma de Calidad Ambiental* (NCA) del *Anexo V del RD 817/2015*. Si *incumple* supone asignarle para los indicadores fisicoquímicos la categoría de *moderado* (tabla A7).

Tabla A7. Límite de cambio de clase de estado ecológico para sustancias preferentes y contaminantes específicos de cuenca.

Clase de estado ecológico	Muy Bueno	Moderado
Sustancias preferentes y contaminantes específicos de cuenca	Cumple NCA	No cumple NCA

4. ELEMENTOS DE CALIDAD HIDROMORFOLOGICO (EC-HM)

Se realiza una toma de muestras anual, y del resultado obtenido se elige el peor valor.

- Alteración del hidroperiodo y del régimen de fluctuación del nivel del agua (ALT_HID_NIV)
- Alteración del régimen de estratificación (ALT_REG_EST)
- Alteración del estado y estructura de la cubeta (ALT_EST_CUB)
- Alteración del estado y estructura de la zona ribereña (ALT_EST_RIB)

5. CALCULO DEL ESTADO FINAL (EF)

Para el cálculo del <u>estado ecológico</u> (EE) se consideran el estado Biológico, el estado Fisicoquímico y el estado Hidromorfológico, de la siguiente manera:

EC-BIO (EE_BIO)	EC-FQ (EE_FQ)	EC-HM (EE_HM)	EEco (EE)
	MB (1-MB)	MB (1-MB)	MB (1-MB)
MuyBueno (1-MB)	BU (2-BU)		BU (2-BU)
wuybueno (1-wb)	MO (3-MO)	MB/BU	MO (3-MO)
	MB/BU		BU (2-BU)
Bueno (2-BU)	MO	MB/BU	
Moderado (3-MO)			MO (3-MO)
Deficiente (4-DE)	Indistinto	Indistinto	DE (4-DE)
Malo (5-MA)			MA (5-MA)

El <u>estado químico</u> (EQ) es "no bueno" cuando hay algún incumplimiento de la Norma de Calidad Ambiental, bien sea como media anual (NCA_MA), como máximo admisible (NCA_CMA) o en la biota (NCA_biota) para las **sustancias prioritarias y otros contaminantes** (tabla A8). Las NCA se recogen en el *Anexo IV del RD 817/2015*.

Tabla A8. Clases de estado químico para sustancias prioritarias y otros contaminantes.

Clase de estado químico	Bueno	No alcanza el buen estado
Sustancias prioritarias y otros contaminantes	Cumple NCA	No cumple NCA
Valoración de cada clase	2	3

Al comparar los resultados para cada métrica con los umbrales establecidos en el RD 817/2015, se ha tenido en cuenta que en el caso de que el resultado coincida exactamente con el LCC (límite de cambio de clase):

- Para EC-BIO y EC-FQ grales, se considerará en la clase inferior con NFC alto.
- Para EC-HMF, se considerará en la clase superior con NFC bajo.
- Para EC-FQ contaminantes específicos, se considerará que cumple la NCA pero con NFC bajo.

El <u>estado</u> (EF) de la masa de agua es el *peor valor* entre su estado ecológico y su estado químico según el diseño de la tabla A9.

Tabla A9. Determinación del estado final.

Estado Final (EF)	Estado Químico (EQ)	
Estado Ecológico (EE)	Bueno	No alcanza el buen estado
Bueno o superior	Bueno	
Moderado		Inferior a bueno
Deficiente	Inferior a bueno	
Malo		

DIAGNÓSTICO DEL ESTADO DE LA LAGUNA HONDA (MAS 1042).

AÑO 2007

Se han considerado los indicadores especificados en los apartados anteriores para los valores medidos en el lago, estableciéndose el estado ecológico global del lago según la metodología descrita con los límites de clase indicados para la tipología nº 16.

En la tabla A10 se incluye el estado ecológico indicado por cada uno de los parámetros, así como la catalogación de la masa de agua teniendo en cuenta los indicadores biológicos, fisicoquímicos e hidromorfológicos según la valoración de este estado ecológico final para cada campaña de muestreo.

Tabla A10. Diagnóstico del estado ecológico según los indicadores.

INDICADOR	VALOR	ESTADO ECOLOGICO
INDICADORES DE CALIDAD HIDROMORFOLÓGICOS		Muy Bueno
INDICADORES DE CALIDAD FISICOQUÍ	MICOS	
DISCO SECCHI (m)	1,1	NC*
pH	8,60	Bueno
CONCENTRACIÓN P TOTAL (mg/L)	0,021	Bueno
INDICADORES DE CALIDAD BIOLÓGICO	os	
CLOROFILA a (μg/L)	10,00	Moderado
BIOVOLUMEN ALGAL (mm³/L)		NC*
FITOPLANCTON (EE_	MFIT)	Moderado
COBERTURA DE ESPECIES INDICADORAS DE EUTROFIA (N°Especies)	Sin dato	
COBERTURA DE ESPECIES EXÓTICAS (NºEspecies)	Sin dato	
HIDRÓFITOS (Presencia/ Ausencia)		NC*
COBERTURA HELÓFITOS (%)	55	Moderado
COBERTURA HIDROFITOS (%)	Sin dato	
RIQUEZA DE MACRÓFITOS (Nº especies)	6	Moderado
OTRA FLORA ACUÁTICA (EE_OFALAM)		Moderado
ÍNDICE IBCAEL	10,69	Muy Bueno
INVERTEBRADOS (EE_I	BCAEL)	Muy Bueno

NC: No Considerado en esta tipología de lago para el cálculo del Estado Ecológico.

Atendiendo a estos valores, el Estado Ecológico sería el siguiente:

Tabla A11. Diagnóstico del estado ecológico.

INDICADOR	Código de estado	Nivel de estado
HIDROMORFOLÓGICO	EE_HM	Muy Bueno
FISICOQUÍMICO	EE_FQ	Bueno
BIOLÓGICO	EE_BIO	Moderado
ESTADO ECOLÓGICO	EE	Moderado

No se han realizado otros muestreos químicos en este año.

A la vista de los resultados obtenidos, el Estado Final de la Laguna Honda es **INFERIOR A BUENO.**

DIAGNÓSTICO DEL ESTADO DE LA LAGUNA HONDA (MAS 1042).

AÑO 2008

Se han considerado los indicadores especificados en los apartados anteriores para los valores medidos en el lago, estableciéndose el estado ecológico global del lago según la metodología descrita con los límites de clase indicados para la tipología nº 16.

En la tabla A12 se incluye el estado ecológico indicado por cada uno de los parámetros, así como la catalogación de la masa de agua teniendo en cuenta los indicadores biológicos, fisicoquímicos e hidromorfológicos según la valoración de este estado ecológico final para cada campaña de muestreo.

Tabla A12. Diagnóstico del estado ecológico según los indicadores.

INDICADOR	VALOR	ESTADO ECOLOGICO
INDICADORES DE CALIDAD HIDROMORFOLÓGICOS		Bueno
INDICADORES DE CALIDAD FISICOQU		
DISCO SECCHI (m)	2,5	NC*
рН	8,40	Bueno
CONCENTRACIÓN P TOTAL (mg/L)	0,021	Bueno

INDICADORES DE CALIDAD BIOLÓGICOS		
CLOROFILA a (µg/L)	8,33	Bueno
BIOVOLUMEN ALGAL (mm³/L)		NC*
FITOPLANCTON (EE_MFIT)		Bueno
COBERTURA DE ESPECIES INDICADORAS DE EUTROFIA (N°Especies)	Sin dato	
COBERTURA DE ESPECIES EXÓTICAS (NºEspecies)	Sin dato	
HIDRÓFITOS (Presencia/ Ausencia)		NC*
COBERTURA HELÓFITOS (%)	75	Bueno
COBERTURA HIDROFITOS (%)	Sin dato	
RIQUEZA DE MACRÓFITOS (Nº especies)	7	Moderado
OTRA FLORA ACUÁTICA (EE_OFALAM)		Moderado
ÍNDICE IBCAEL	10,90	Muy Bueno
INVERTEBRADOS (EE_IBCAEL)		Muy Bueno

NC: No Considerado en esta tipología de lago para el cálculo del Estado Ecológico.

Atendiendo a estos valores, el Estado Ecológico sería el siguiente:

Tabla A13. Diagnóstico del estado ecológico.

INDICADOR	Código de estado	Nivel de estado
HIDROMORFOLÓGICO	EE_HM	Bueno
FISICOQUÍMICO	EE_FQ	Bueno
BIOLÓGICO	EE_BIO	Moderado
ESTADO ECOLÓGICO	EE	Moderado

No se han realizado otros muestreos químicos en este año.

A la vista de los resultados obtenidos, el Estado Final de la Laguna Honda es **INFERIOR A BUENO.**

DIAGNÓSTICO DEL ESTADO DE LA LAGUNA HONDA (MAS 1042).

AÑO 2009

Se han considerado los indicadores especificados en los apartados anteriores para los valores medidos en el lago, estableciéndose el estado ecológico global del lago según la metodología descrita con los límites de clase indicados para la tipología nº 16.

En la tabla A14 se incluye el estado ecológico indicado por cada uno de los parámetros, así como la catalogación de la masa de agua teniendo en cuenta los indicadores biológicos, fisicoquímicos e hidromorfológicos según la valoración de este estado ecológico final para cada campaña de muestreo.

Tabla A14. Diagnóstico del estado ecológico según los indicadores.

INDICADOR	VALOR	ESTADO ECOLOGICO
INDICADORES DE CALIDAD HIDROMORFOLÓGICOS		Muy Bueno
INDICADORES DE CALIDAD FISICOQUÍ	MICOS	
DISCO SECCHI (m)	2,8	NC*
рН	8,52	Bueno
CONCENTRACIÓN P TOTAL (mg/L)	0,015	Muy Bueno
INDICADORES DE CALIDAD BIOLÓGICO	os	
CLOROFILA a (μg/L)	3,09	Muy Bueno
BIOVOLUMEN ALGAL (mm³/L)		NC*
FITOPLANCTON (EE_MFIT)		Muy Bueno
COBERTURA DE ESPECIES INDICADORAS DE EUTROFIA (N°Especies)	Sin dato	
COBERTURA DE ESPECIES EXÓTICAS (N°Especies)	Sin dato	
HIDRÓFITOS (Presencia/ Ausencia)		NC*
COBERTURA HELÓFITOS (%)	75	Bueno
COBERTURA HIDROFITOS (%)	Sin dato	
RIQUEZA DE MACRÓFITOS (Nº especies)	10	Bueno
OTRA FLORA ACUÁTICA (EE_OFALAM)		Bueno
ÍNDICE IBCAEL	11,34	Muy Bueno
INVERTEBRADOS (EE_I	BCAEL)	Muy Bueno

NC: No Considerado en esta tipología de lago para el cálculo del Estado Ecológico.

Atendiendo a estos valores, el Estado Ecológico sería el siguiente:

Tabla A15. Diagnóstico del estado ecológico.

INDICADOR	Código de estado	Nivel de estado
HIDROMORFOLÓGICO	EE_HM	Muy Bueno
FISICOQUÍMICO	EE_FQ	Muy Bueno
BIOLÓGICO	EE_BIO	Bueno
ESTADO ECOLÓGICO	EE	Bueno

No se han realizado otros muestreos químicos en este año.

A la vista de los resultados obtenidos, el Estado Final de la Laguna Honda es BUENO.

DIAGNÓSTICO DEL ESTADO DE LA LAGUNA HONDA (MAS 1042).

AÑO 2010

Se han considerado los indicadores especificados en los apartados anteriores para los valores medidos en el lago, estableciéndose el estado ecológico global del lago según la metodología descrita con los límites de clase indicados para la tipología nº 16.

En la tabla A16 se incluye el estado ecológico indicado por cada uno de los parámetros, así como la catalogación de la masa de agua teniendo en cuenta los indicadores biológicos, fisicoquímicos e hidromorfológicos según la valoración de este estado ecológico final para cada campaña de muestreo.

Tabla A16. Diagnóstico del estado ecológico según los indicadores.

INDICADOR	VALOR	ESTADO ECOLOGICO
INDICADORES DE CALIDAD HIDROMORFOLÓGICOS		Muy Bueno
INDICADORES DE CALIDAD FISICOQUÍMICOS		
DISCO SECCHI (m)	2,0	NC*
рН	8,10	Bueno
CONCENTRACIÓN P TOTAL (mg/L)	0,030	Bueno

INDICADORES DE CALIDAD BIOLÓGICOS		
CLOROFILA a (µg/L)	8,19	Bueno
BIOVOLUMEN ALGAL (mm³/L)		NC*
FITOPLANCTON (EE_MFIT)		Bueno
COBERTURA DE ESPECIES INDICADORAS DE EUTROFIA (N°Especies)	Sin dato	
COBERTURA DE ESPECIES EXÓTICAS (N°Especies)	Sin dato	
HIDRÓFITOS (Presencia/ Ausencia)		NC*
COBERTURA HELÓFITOS (%)	75	Bueno
COBERTURA HIDROFITOS (%)	Sin dato	
RIQUEZA DE MACRÓFITOS (Nº especies)	17	Bueno
OTRA FLORA ACUÁTICA (EE_OFALAM)		Bueno
ÍNDICE IBCAEL	9,53	Bueno
INVERTEBRADOS (EE_IBCAEL)		Bueno

NC: No Considerado en esta tipología de lago para el cálculo del Estado Ecológico.

Atendiendo a estos valores, el Estado Ecológico sería el siguiente:

Tabla A17. Diagnóstico del estado ecológico.

INDICADOR	Código de estado	Nivel de estado
HIDROMORFOLÓGICO	EE_HM	Muy Bueno
FISICOQUÍMICO	EE_FQ	Bueno
BIOLÓGICO	EE_BIO	Bueno
ESTADO ECOLÓGICO	EE	Bueno

No se han realizado otros muestreos químicos en este año.

A la vista de los resultados obtenidos, el Estado Final de la Laguna Honda es BUENO.